Mac本地部署LLama3+AnythingLLM+Docker方式的本地知识库

本文介绍了如何在Mac上安装Docker,然后下载并配置ollama和Enchanted,以及如何使用docker安装AnythingLLM,包括设置ollamaurl。详细步骤包括下载链接和必要的终端命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 关于 Llama、DeepSeek 和 AnythingLLM 技术概览 #### Llama 概述 Llama 是由 Meta 开发的一系列大语言模型,旨在提供高效的语言处理解决方案。该模型家族因其广泛的适用性和强大的性能而在自然语言处理领域获得了广泛关注。 #### DeepSeek-R1 特点与应用 DeepSeek-R1 属于高性能的大规模预训练语言模型类别,特别擅长执行复杂的推理任务[^1]。此模型能够根据给定的任务指令生成高质量的回答或摘要,并支持多种应用场景下的自动化流程开发。为了充分利用 DeepSeek-R1 的功能,在实际部署过程中通常会将其集成到更复杂的工作流中,比如结合 LangGraph 实现更加智能化的服务构建。 对于想要在本地环境中运行 DeepSeek-R1 的开发者来说,OLlama 提供了一个便捷的选择。通过定义辅助函数 `get_llm_reasoner_model()` 可以轻松获得所需的 LLM 模型实例: ```python from langchain_ollama import ChatOllama def get_llm_reasoner_model(): return ChatOllama( model="deepseek-r1:14b", temperature=0.6 ) ``` 这段代码展示了如何配置并初始化一个基于 DeepSeek-R1 的聊天机器人接口,其中参数设置决定了对话风格和响应质量。 #### AnythingLLM 平台特性简介 AnythingLLM 不是一个具体的产品名称而是指代一类灵活可定制化的大型语言模型服务平台。这类平台允许用户自定义模型架构、微调现有模型或是上传自有数据集来进行个性化训练。虽然具体的实现细节可能因不同供应商而异,但总体目标都是为了让使用者可以根据自己的需求快速搭建适合特定业务场景的应用程序。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值