- 金黄色:#FFD700
- 黄色:#FFFF00
- 橙色:#FFA500
- 红色:#FF0000
- 玫瑰色:#FFC0CB
- 棕色:#A52A2A
- 深绿色、宝蓝色、橙色、蓝绿色、白色、红色、黄色、深棕色和灰色:
- 深绿色:#006400
- 宝蓝色:#1E90FF
- 橙色:#FFA500
- 蓝绿色:#00FFFF
- 白色:#FFFFFF
- 红色:#FF0000
- 黄色:#FFFF00
- 深棕色:#654321
- 灰色:#808080
- 奶油色、宝蓝色、深蓝色、黄色、白色、深灰色、棕色、天蓝色和红色:
- 奶油色:#FFFDD0
- 宝蓝色:#1E90FF
- 深蓝色:#00008B
- 黄色:#FFFF00
- 白色:#FFFFFF
- 深灰色:#A9A9A9
- 棕色:#A52A2A
- 天蓝色:#87CEEB
- 红色:#FF0000
- 灰色、米色、橙色、棕色、青色、绿色、紫色、金黄色和深蓝色:
- 灰色:#808080
- 米色:#F5DEB3
- 橙色:#FFA500
- 棕色:#A52A2A
- 青色:#00CED1
- 绿色:#008000
- 紫色:#800080
- 金黄色:#FFD700
- 深蓝色:#000080
- 北极蓝、钴蓝、岩黄色、赭色、石墨灰、浅桔色、蕃茄红、艳红色、银灰色:
- 北极蓝:#00BFFF
- 钴蓝:#4682B4
- 岩黄色:#FFB451
- 赭色:#A0522D
- 石墨灰:#43464B
- 浅桔色:#FFE4B5
- 蕃茄红:#FF6347
- 艳红色:#FF69B4
- 银灰色:#C0C0C0
在代码中的使用
import numpy as np
import matplotlib.pyplot as plt
x = ['Rank-1', 'mAP']
IFGSM = [4.04,3.36]
MI = [1.60,1.37]
VMI = [1.57,1.42]
SI = [3.86,3.35]
IG =[1.87,1.75]
SMI = [1.66,1.39]
IG_MI =[1.78,1.68]
GSMI =[1.37,1.24]
EGSMI = [1.28,1.20]
# 创建柱状图
fig = plt.figure(figsize=(12, 8))
#fig, ax = plt.subplots(12,8)
x_pos = np.arange(2)
width = 0.07
#plt.bar(x\_pos - 4\*width/2, FGSM, width, align='center', alpha=0.5, label='Alg1')
plt.bar(x_pos - 2\*width/2, IFGSM, width, align='center', alpha=0.5,color="#FF69B4" , label='IFGSM')
plt.bar(x_pos , MI, width, align='center', alpha=0.5, label='MI')
plt.bar(x_pos + 2\*width/2, VMI, width, align='center', alpha=0.5,color="#FF69B5" ,label='VMI')
plt.bar(x_pos + 4\*width/2, SI, width, align='center', alpha=0.5, label='SI')
plt.bar(x_pos + 6\*width/2, IG, width, align='center', alpha=0.5, label='IG')
plt.bar(x_pos + 8\*width/2, SMI, width, align='center', alpha=0.5, label='SMI')
plt.bar(x_pos + 10\*width/2, IG_MI, width, align='center', alpha=0.5, label='IG\_MI')
plt.bar(x_pos + 12\*width/2, GSMI, width, align='center', alpha=0.5, label='GSMI(Ours)')
plt.bar(x_pos + 14\*width/2, EGSMI, width, align='center', alpha=0.5, label='GSMI(Ours)')
#plt.xticks(1.2\*x\_pos, x)
# 增加水平间距
plt.xticks(x_pos+0.2,x)
plt.subplots_adjust(wspace=0.7)
#ax.set\_xlabel('111')
#ax.set\_ylabel('Attack result')
#ax.set\_title('111111111111')
plt.xlabel('Evaluation metrics', fontsize=18)
plt.ylabel('Attack result (%)', fontsize=18)
plt.title('(e) Attack Swinv2-Transformer', fontsize=18)
plt.legend(loc='center')
#plt.legend(bbox\_to\_anchor=(1, 1))#调整图例的位置
# 显示图像
**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**
**深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**
**因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**
![img](https://img-blog.csdnimg.cn/img_convert/d61f9a49b19241350510b3433bc30122.png)
![img](https://img-blog.csdnimg.cn/img_convert/87594157402483c26aa34d52ff148ad6.png)
![img](https://img-blog.csdnimg.cn/img_convert/19fba411f9dcad14deb9071c48439e99.png)
![img](https://img-blog.csdnimg.cn/img_convert/0e6f6228274ba0bb775e1abacb28a0cd.png)
![img](https://img-blog.csdnimg.cn/img_convert/6c361282296f86381401c05e862fe4e9.png)
![img](https://img-blog.csdnimg.cn/img_convert/9f49b566129f47b8a67243c1008edf79.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!**
**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)**
95%以上前端开发知识点,真正体系化!**
**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
**如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)**
![](https://img-blog.csdnimg.cn/img_convert/d32f8f530e733bcc9e48b69b5d9f6e07.jpeg)