| — | — | — | — |
| A | 8 | 50 | 13% |
| B | 12 | 60 | 15% |
| C | 27 | 78 | 19% |
| D | 4 | 50 | 12% |
| E | 45 | 100 | 25% |
| F | 17 | 66 | 16% |
下图描述了相应的轮盘:
如图所示,将适应度值缩放到新范围可提供比原始分区更合适的轮盘分区。现在,选择最佳个体的可能性仅是最差个个体的2倍,而在原始适应度轮盘中最佳适应度者时被选择的可能性较最差个体高11倍以上。
锦标赛选择(Tournament selection)
在锦标赛选择方法的每一轮中,从总体中随机选择两个或多个个体,其中适应度得分最高的获胜并被选中。
例如,假设使用与前面示例中相同的六个个体和相同的适用度值。下图说明了随机选择其中三个(A,B和F),F作为获胜者,因为F在这三个个体中具有最大适应度值:
参加每个锦标赛选择回合的个体数量(示例中为3个)称为锦标赛规模。规模越大,最好的个人参加比赛的机会就越高,得分低的个人赢得比赛并被选中的机会就越小。
这种选择方法的优势在于,只要可以比较任意两个个体并确定其中哪个更好,就不需要适应度函数的实际值。
交叉操作,也称为重组,用于结合双亲的遗传信息,以产生(通常是两个)后代。
交叉操作通常使用一些(高)概率值。只要不应用交叉,父母双方都会直接克隆到下一代。
单点交叉(Single-point crossover)
在单点交叉法中,随机选择双亲染色体上的位置。此位置称为交叉点(crossover point)或切割点(cut point)。该点右边的基因在双亲染色体之间交换,得到了两个后代,每个后代都携带着双亲的一些遗传信息。
下图说明了在一对二进制染色体上进行的单点交叉操作,交叉点位于第五个和第六个基因之间:
k点交叉(K-point crossover)
k点交叉是单点交叉的扩展,在交叉过程中使用k个交叉点,其中k表示正整数。
下图是k=2时的k点交叉示例,第一个交叉点位于第三和第四基因之间,另一个位于第七和第八个基因之间:
均匀交叉(Uniform crossover)
在均匀交换中,每个基因是通过随机选择一个亲本独立确定的。当随机分布为50%时,每个父母都有影响后代的机会相同:
Note
: 在此示例中