遗传算法中常见遗传算子(1)

本文详细介绍了遗传算法中常见的遗传算子,包括锦标赛选择、单点交叉、k点交叉、均匀交叉等选择和交叉方法,以及位翻转突变、交换突变等突变算子,探讨了这些算子在实数编码染色体中的应用,旨在帮助读者理解遗传算法的工作原理和操作细节。
摘要由CSDN通过智能技术生成

| — | — | — | — |

| A | 8 | 50 | 13% |

| B | 12 | 60 | 15% |

| C | 27 | 78 | 19% |

| D | 4 | 50 | 12% |

| E | 45 | 100 | 25% |

| F | 17 | 66 | 16% |

下图描述了相应的轮盘:

适应度缩放旋转

如图所示,将适应度值缩放到新范围可提供比原始分区更合适的轮盘分区。现在,选择最佳个体的可能性仅是最差个个体的2倍,而在原始适应度轮盘中最佳适应度者时被选择的可能性较最差个体高11倍以上。

锦标赛选择(Tournament selection)

在锦标赛选择方法的每一轮中,从总体中随机选择两个或多个个体,其中适应度得分最高的获胜并被选中。

例如,假设使用与前面示例中相同的六个个体和相同的适用度值。下图说明了随机选择其中三个(A,B和F),F作为获胜者,因为F在这三个个体中具有最大适应度值:

锦标赛选择

参加每个锦标赛选择回合的个体数量(示例中为3个)称为锦标赛规模。规模越大,最好的个人参加比赛的机会就越高,得分低的个人赢得比赛并被选中的机会就越小。

这种选择方法的优势在于,只要可以比较任意两个个体并确定其中哪个更好,就不需要适应度函数的实际值。

常见交叉算子


交叉操作,也称为重组,用于结合双亲的遗传信息,以产生(通常是两个)后代。

交叉操作通常使用一些(高)概率值。只要不应用交叉,父母双方都会直接克隆到下一代。

单点交叉(Single-point crossover)

在单点交叉法中,随机选择双亲染色体上的位置。此位置称为交叉点(crossover point)或切割点(cut point)。该点右边的基因在双亲染色体之间交换,得到了两个后代,每个后代都携带着双亲的一些遗传信息。

下图说明了在一对二进制染色体上进行的单点交叉操作,交叉点位于第五个和第六个基因之间:

单点交叉

k点交叉(K-point crossover)

k点交叉是单点交叉的扩展,在交叉过程中使用k个交叉点,其中k表示正整数。

下图是k=2时的k点交叉示例,第一个交叉点位于第三和第四基因之间,另一个位于第七和第八个基因之间:

k点交叉

均匀交叉(Uniform crossover)

在均匀交换中,每个基因是通过随机选择一个亲本独立确定的。当随机分布为50%时,每个父母都有影响后代的机会相同:

均匀交叉

Note: 在此示例中࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值