2025年数据驱动的流体力学最新干货分享!

深度学习与流体力学的学科交叉正不断扩展科研的边界。在工业领域,例如航天航空、海洋船舶和能源动力等行业,存在许多亟待解决的流体控制与优化设计难题。流体力学问题的主要特点包括高维度、强非线性和数据量大。近年来,深度学习技术因其数据驱动的特性和处理高维复杂问题的能力,已在流体力学领域取得了一定的应用,而且获了主流期刊比如《Nature》和《Science》杂志的认可。

传统的流体力学模拟方法在应对高耦合度和非线性问题时面临诸多限制,而深度学习技术为流体力学提供了新的思路和方法。这主要集中在:基于流体力学控制方程的辅助求解,流场重构等正问题;控制方程系数等特征量提取等逆问题。通过结构化的神经网络支起完备的解空间,这一技术可以根据外部实验测量数据、物理控制方程、初边界条件等辅助信息寻找问题准确的解函数。同时,不同的神经网络结构提供了更为广阔的灵活性以及功能性,为解决复杂流动问题提供了创新的解决方案,提升了流体动力学仿真的精度与效率,推动了流场优化和控制,以及对复杂流动现象的深入理解。

图片

概述

从流体力学基础,流体力学仿真基础以及流体力学&深度学习基础,层层递进,深入浅出,最终从代码层级一站式打通从流体力学理论到问题解决的整个流程。本课程注重学科基础和数值建模框架,不仅提供代码上的实操支持,而且从物理层面给出仿真结果的物理解释,适合初学者进阶。课程结合前沿论文,讲解论文论述框架,瞄准当下热点难点。最后,依托所课程内容,提供该主题下论文结构性和系统性撰写方式。

图片

图表 1 机器学习在流体力学中的应用

特色

培养流体力学和深度学习的建模能力

l课程注重学科基础和科学建模方案,涵盖多物理场耦合问题和控制方程构建,以及问题简化的物理依据。结合控制方程,将问题从复杂到简单,最终在CAE训练中感受如何抓住主要矛盾,精简问题结论;

课程注重深度学习基础理论,培养从0到1的神经网络建模过程,从原理上理解神经网络,从代码上实现神经网络;

学习深度学习在流体力学中的应用,比较经典解法和深度学习解法。培养精通流体力学与深度学习的复合型人才,为解决流体力学问题提供另一种范式。

理论与实践并重

从工程师培养的角度,培养简化问题的能力;

简化软件上手难度,定位软件或代码为服务于问题的工具;

手把手教学CFD建模,使用如COMSOL Multiphysics,Ansys Fluent,OpenFOAM 等建模软件,并同步展示控制方程,理解操作的底层逻辑。

追踪前沿动态

分析国际团队最新研究成果,以探索深度学习在流体力学中的发展趋势;

拓展学员拥有国际视野,加强与国际同行的交流合作;

l积极鼓励学员在流体力学与深度学习间寻找创新交叉点,跟踪前沿研究。

教师

该位主讲老师来自于国内985高校实验室,毕业于国内顶尖的985工程院校和海外名校,和多个公司有深度学习流体力学横向项目上的合作。纵向方面,专业领域涵盖流体力学和多物理场流场耦合问题。老师拥有丰富的仿真经验和培训经验,熟练使用如COMSOL Multiphysics,Ansys Fluent,OpenFOAM 等建模软件。老师在该领域同样拥有多年研究经验,发表子刊、SCI论文多篇。擅长深度学习建模研究,流体力学中的深度学习方法,数据驱动的计算力学,有限元方法,有限差分法,有限体积法,CFD,并广泛应用于解决流体力学和多物理场仿真挑战中。在深度学习方面,研究重点包括长短记忆神经网络 (LSTM)、卷积神经网络 (CNN),以及物理信息神经网络 (Physics-informed neural networks)等。

第一天

流体力学复习Day 1-1

连续介质假设

拉格朗日/欧拉描述

变形梯度及其谱分解

速度,速度梯度

特殊运动:刚体运动,稳定运动,恒定速度梯度运动

自旋与涡量运输方程,环量与涡线

客观性与客观率

Day 1-2

雷诺输运方程

欧拉描述与拉格朗日描述下的主守恒方程

质量、动量、角动量守恒

热力学第一/二定律

本构方程客观性和热力学兼容性

案例:刚性导热体本构方程构建

第二天

流体力学及其仿真Day 2-1

图片

本构方程客观性和热力学兼容性案例

-弹性流体,定常流,可压粘性流 

-不可压粘性流,不可压无粘流(理想流体)

上述流体中的涡量输运方程

Day 2-2

多物理场耦合模型:

-非等热可压粘性流本构

-单类稀物质输运本构

-多类稀物质输运本构

-相场法多相流本构和毛细作用

理论&实践:COMSOL用户文档对比分析

-相场法

-热流耦合问题

-物质输运

-离子输运问题

-多孔材料的流固耦合

第三天

流体力学实操

Day 3-1,2

COMSOL Multiphysics, OpenFOAM, Ansys Fluent流体力学实操

流体力学计算方法

-时间差分算法

-有限元法

-对流问题中的稳定性方法举例

案例分析

-绕圆柱单向流

-自然热对流,非等热流以及共轭传热

-流体中的稀物质输运,离子输运问题

-基于相场法的二相流,三相流

-基于相场法的多孔材料的毛细作用

-流固耦合-动网格法

-微流体/微流控以及器官芯片中的流场仿真

量纲分析简介

图片

图片

图片

图片

第四天

神经网络基础回顾:感知机、多层感知机

神经网络基本结构:激活函数、损失函数、优化算法

神经网络训练技巧:mini-batch,正则化,dropout

结构化神经网络

-卷积神经网络

-循环神经网络

-物理信息神经网络

-算子神经网络

实操:

-神经网络的代码实现 (Matlab, Python)

-训练技巧演示 (Matlab)

-参数更新算法演示 (Matlab)

图片

图片

图片

第五天

流体力学&深度学习实战:

-CNN在流场预测中的应用 (Python实操)

-CNN提取流场出流速、压力、涡旋等特征 (Python实操)

-LSTM 模型在流场时间序列预测中的应用 (Python实操)

-U-Net结构应用于流场预测、重构、优化 (Python实操)

图片

图片

图片

-PINN与DeepXDE实操 (Python):

-PINN预测常微分方程的响应

-2D热传导

-Burger方程

-圆柱绕流问题

-使用PINN模型求解稳态和非稳态流动问题

-iPINN与DeepXDE实操案例:

-数据驱动的iPINN常微分方程逆问题求解

-数据驱动的iPINN偏微分方程逆向问题求解

-论文导读

-Lino M, Fotiadis S, Bharath A A, et al. Current and emerging deep-learning methods for the simulation of fluid dynamics[J]. Proceedings of the Royal Society A, 2023, 479(2275): 20230058.

-Peng W, Qin S, Yang S, et al. Fourier neural operator for real-time simulation of 3D dynamic urban microclimate[J]. Building and Environment, 2024, 248: 111063.

时间:

2025.4.12-----2025.4.13全天(上午9:00-11:30下午13:30-17:00)

2025.4.16-----2025.4.17晚上(晚上19:00-22:00)

2025.4.19-----2025.4.20全天(上午9:00-11:30下午13:30-17:00)

腾讯会议 线上(共五天时间 提供全程回放视频)

详情:深度学习流体力学与固体力学/岩土工程/AI助力力学SCI论文写作助力您发顶刊!

编写使用物理信息神经网络(Physics-Informed Neural Network, PINN)模型进行三维旋转流场重构的程序代码是一个复杂的过程。以下是一个简要的示例代码,展示如何使用PINN模型进行三维旋转流场重构。这个示例代码使用了TensorFlow和Keras库。 ```python import tensorflow as tf import numpy as np from tensorflow.keras import layers from tensorflow.keras.models import Model # 定义物理信息神经网络模型 def pinn_model(input_shape): inputs = layers.Input(shape=input_shape) x = layers.Dense(64, activation='tanh')(inputs) x = layers.Dense(64, activation='tanh')(x) x = layers.Dense(64, activation='tanh')(x) outputs = layers.Dense(1)(x) model = Model(inputs=inputs, outputs=outputs) return model # 定义损失函数 def custom_loss(y_true, y_pred): # 计算物理方程的残差 # 假设我们有一个简单的物理方程,例如三维Navier-Stokes方程 # 这里只是示例,实际应用中需要根据具体问题定义物理方程 u, v, w, p = tf.split(y_pred, 4, axis=-1) u_true, v_true, w_true, p_true = tf.split(y_true, 4, axis=-1) # 计算残差 residual = tf.gradients(u, x)[0] + tf.gradients(v, y)[0] + tf.gradients(w, z)[0] # 计算损失 mse = tf.reduce_mean(tf.square(y_true - y_pred)) return mse + residual # 生成训练数据 x_train = np.random.rand(1000, 3) u_train = np.sin(x_train[:, 0]) * np.cos(x_train[:, 1]) * np.exp(-x_train[:, 2]) v_train = -np.cos(x_train[:, 0]) * np.sin(x_train[:, 1]) * np.exp(-x_train[:, 2]) w_train = np.zeros_like(x_train[:, 0]) p_train = np.zeros_like(x_train[:, 0]) y_train = np.stack([u_train, v_train, w_train, p_train], axis=-1) # 创建模型 model = pinn_model(input_shape=(3,)) # 编译模型 model.compile(optimizer='adam', loss=custom_loss) # 训练模型 model.fit(x_train, y_train, epochs=1000, batch_size=32) # 测试数据 x_test = np.random.rand(100, 3) # 预测结果 y_pred = model.predict(x_test) ``` 这个示例代码展示了如何使用PINN模型进行三维旋转流场重构。实际应用中,需要根据具体问题定义物理方程和损失函数,并进行相应的调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值