我心目中最棒的 10 个 Python 库

本文介绍了几个Python中的重要工具和库,如FastAPI的升级版Typer,彩色终端界面Rich,GUI框架DearPyGui,以及用于错误呈现和配置管理的PrettyErrors、Diagrams、Hydra/OmegaConf等。这些工具提高了开发者效率,支持了图形用户界面、终端应用美观、动态GUI和AI项目的配置自动化。
摘要由CSDN通过智能技术生成

741c3c8cf2335e57c11c4bba63ad6651.png

它是FastAPI的升级版,不仅能够准确地记录代码,还能够轻松地进行CLI验证。

Typer易于学习和使用,不需要用户阅读复杂的教程文档即可上手。支持编辑器(如VSCode)代码自动补全,提高开发人员的开发效率,减少bug的数量。

其次,Typer还能配合命令行神器Click使用,就可以利用Click的优点和插件,实现更复杂的功能。

开源地址:https://github.com/tiangolo/typer

# 2、Rich


谁规定CLI界面一定得是黑白的?它也可以是彩色的。

Rich API不仅能够在终端输出提供丰富的彩色文本和精美的格式,还提供了精美的表格、进度条、编辑器、追踪器、语法高亮等。如下图所示。

59f1af2074af3b1a78b3e77113845289.png

它还可以安装在Python REPL上,所有的数据结构都可以漂亮地输出或标注。

总而言之,它是彩色的、漂亮的、强大的。

Rich兼容性也不错,适用于Linux,Mac和Windows等多种系统。真彩色/表情符号可与新的Windows终端一起使用。

但是请注意,Rich必须要Python 3.6.1或以上版本。

开源地址:https://github.com/willmcgugan/rich

# 3、Dear PyGui


如上所示,虽然终端应用程序可以做成很漂亮的样子。但是,你可能还需要一个真正的GUI。

b7e66e7790195705ef3778256a848a1f.png

Dear PyGui是一个便于使用、功能强大的Python GUI框架。但是它与其他的Python GUI却有着根本上的不同。

它使用了即时模式范式和计算机的GPU来实现动态界面。即时模式范式在视频游戏中非常流行,这意味着它的动态GUI不需要保留任何数据,而是逐帧独立绘制的。同时,它还使用GPU来建构动态界面。

b0cc15f2cc003ab013ae49acd08e9cba.png

Dear PyGui还可以绘图、创建主题、创建2D游戏,还拥有一些小工具,比如说内置文档、日志记录、源代码查看器之类的,这些小工具可以协助App的开发。

支持它的系统有:Windows 10(DirectX 11),Linux(OpenGL 3)和macOS(Metal)等。

开源地址:https://github.com/hoffstadt/DearPyGui

# 4、PrettyErrors


PrettyErrors是一个精简Python错误信息的工具,特点是界面十分简洁友好。

它最显著的功能是支持在终端进行彩色输出,标注出文件栈踪迹,发现错误信息,过滤掉冗余信息,提取出关键部分,并且进行彩色标注,从而提高开发者的效率。

650a04e393c5bf139e550c87a57780ea.png

而且它可以不用安装,直接被导入项目中使用,但是需要先配置一些参数,其导入和配置的参数如下:

c3f5109cf1d55364903509f5edac6be9.png

开源地址:https://github.com/onelivesleft/PrettyErrors

# 5、Diagrams


程序员在编程的时候,有时候需要跟同事解释他设计的程序代码之间复杂的结构关系,然而这不是一两句话能说清楚的,需要画表或者做脉络图。

一般情况下,程序员使用GUI工具处理图表,并将文稿进行可视化处理。但是还有更好的方法,比如说使用Diagrams库。

Diagrams让不需要任何设计类工具,直接在Python代码中绘制云系统结构。它们的图标来自多家云服务商,包括AWS, Azure, GCP等。

仅需几行代码,就可以简单地创造出箭头符号和结构图。

4e7168b9aeb61b4a38575fbde2113b1c.png

由于它使用Graphviz来渲染图,所以还需要先安装好Graphviz。

开源地址:https://github.com/mingrammer/diagrams

# 6、Hydra and OmegaConf


在做机器学习项目的时候,需要做一大堆的环境配置工作。因此,在一些复杂的应用程序中,配置管理工作也相应变得复杂。

Hydra可以使配置工作变得简单。它能够从命令行或者配置文件中覆盖部分出来,无需维护相似的配置文件,用组合的方式进行配置,从而加快了实验运行速度。

efd9286df1d4005039821e5eaf884516.png

Hydra兼容性强,拥有含插件的结构,能够很好地与开发者的操作文件融合。它的插件还可以实现直接通过命令行,就把代码发布到AWS或者其他云端系统。

Hydra也离不开OmegaConf,两者关系密不可分,OmegaConf为Hydra的分层配置系统提供了协同的API,二者协同运作可支持YAML、配置文件、对象、CLI参数等。

开源地址:https://github.com/facebookresearch/hydra,https://github.com/omry/omegaconf

# 7、PyTorch Lightning


PyTorch Lightning也是Facebook的一个研究成果。它是一个轻巧的PyTorch包装器,用于高性能AI研究,其最重要的特征是能够解析PyTorch代码,让代码研究成分和工程成分的分离。

8dbf6aec01ad373c8b53dde6407ebc83.png

它的扩展模型可以在任何硬件(CPU、GPU、TPU)上运行,且容易被复制,删除了大量的文件样本,保持了自身的灵活性,运行速度快。

Lightning能够使DL / ML研究的40多个部分实现自动化,例如GPU训练、分布式GPU(集群)训练、TPU训练等等……

因为Lightning将可以将文件自动导出到ONNX或TorchScript,所以它适用于进行快速推理的AI研究员、BERT或者自监督学习的研究团队等。

开源地址:https://github.com/PyTorchLightning/PyTorch-lightning

# 8、Hummingbird


Hummingbird是微软的一项研究成果,它能够将已经训练好的ML模型汇编成张量计算,从而不需要设计新的模型。

还允许用户使用神经网络框架(例如PyTorch)来加速传统的ML模型。

0bf682d923630a8192a5f82de2039232.png

它的推理API跟sklearn范例十分相似,都可以重复使用现有的代码,但是它是用Hummingbird生成的代码去实现的。

Hummingbird还在Sklearn API之后提供了一个方便的统一推理API。这样就可以将Sklearn模型与Hummingbird生成的模型互换,而无需更改推理代码。

它之所以被重点关注,还因为它能够支持多种多样的模型和格式。

到目前为止,Hummingbird支持PyTorch、TorchScript、ONNX和TVM等各种ML模型。

开源地址:https://github.com/microsoft/hummingbird

# 9、HiPlot


由于ML模型变得越来越复杂,还有很多超参数,于是就需要用到HiPlot。HiPlot是今年3月Facebook发行的一个库,主要用于处理高维数据。

Facebook AI通过几十个超参数和10万多个实验,利用HiPlot,来分析深度神经网络。

它是用平行图和其他的图像方式,帮助AI研究者发现高维数据的相关性和模型,是一款轻巧的交互式可视化工具。

afa9350528fb0ecda955edf469e0ab4b.png

HiPlot与其他可视化工具相比,有其特有的优点:
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。

img

img

img

img

img

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

86381401c05e862fe4e9.png)

img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注:Python)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值