输入下面命令
conda create -n y8 python=3.8
是否安装环境所需基础包,输入y安装即可,安装完成如下图
输入下面命令查看是否创建成功
conda env list
激活进入环境
conda activate y8
激活成功后,前面的base会替换成y8
第三步 安装配置文件
首先先把pip的源换到国内aliyun镜像,下载速度提高很多
pip config set install.trusted-host mirrors.aliyun.com
首先conda环境cd进入ultralytics-main下,在文件夹内有个配置文件requirements.txt 在conda页面使用pip安装一下
注意如果是2024新版yolov8 requirements.txt文件在ultralytics.egg-info文件夹下
pip install -r requirements.txt
很多网友反应requirements.txt没有了,我把内容放在这,复制自己新建一个requirements.txt安装,配置环境。
# Ultralytics requirements
# Usage: pip install -r requirements.txt
# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.22.2 # pinned by Snyk to avoid a vulnerability
opencv-python>=4.6.0
pillow>=7.1.2
pyyaml>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
# Logging -------------------------------------
# tensorboard>=2.13.0
# dvclive>=2.12.0
# clearml
# comet
# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0
# Export --------------------------------------
# coremltools>=6.0,<=6.2 # CoreML export
# onnx>=1.12.0 # ONNX export
# onnxsim>=0.4.1 # ONNX simplifier
# nvidia-pyindex # TensorRT export
# nvidia-tensorrt # TensorRT export
# scikit-learn==0.19.2 # CoreML quantization
# tensorflow>=2.4.1 # TF exports (-cpu, -aarch64, -macos)
# tflite-support
# tensorflowjs>=3.9.0 # TF.js export
# openvino-dev>=2023.0 # OpenVINO export
# Extras --------------------------------------
psutil # system utilization
py-cpuinfo # display CPU info
# thop>=0.1.1 # FLOPs computation
# ipython # interactive notebook
# albumentations>=1.0.3 # training augmentations
# pycocotools>=2.0.6 # COCO mAP
# roboflow
我已经安装了一遍,安装完成大概如下图所示
安装完配置文件在安装一下yolov8在python>=3.8版本必要安装包
pip install ultralytics
第四步 下载训练模型,推荐yolov8s.pt或者yolov8n.pt,模型小,下载快,在gitee或者github下方readme里面,下载完成后,将模型放在主文件夹下,
yolov8s.pt下载地址:yolov8s.pt
yolov8n.pt下载地址:yolov8n.pt
YOLOv8 可以在命令行界面(CLI)中直接使用,使用yolov8自带经典图片进行测试:
首先cd进入yolov8主文件夹下,运行下面命令
yolo predict model=yolov8n.pt source='ultralytics/assets/bus.jpg' device=0
我的结果保存在runs\detect\predict4中,你们的看Results saved to 存放地址,结果如下图
如果出现上面图片即成功
第四步 训练自己模型(cpu)
首先在yolov8主文件夹内创建data文件夹,创建一个data.yaml文件:
这里需要转成yolov8训练集
train: xxx/xxx/images/train //xxx/xxx为训练集图片根目录地址,一定要是绝对路径
val: xxx/xxx/images/val
nc: 1 #标签数量
names: ["1"]#标签名称
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
c1008edf79.png)
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以扫码获取!!!(备注Python)
