《菜菜的机器学习sklearn课堂》数据预处理和特征工程

当X中的特征数量非常多的时候,fit会报错并表示:数据量太大了我计算不了

此时使用partial_fit作为训练接口

scaler = scaler.partial_fit(data)

使用numpy来实现归一化

import numpy as np

X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])

#归一化

X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))

X_nor

#逆转归一化

X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)

X_returned

数据标准化 preprocessing.StandardScaler

数据标准化(Standardization,又称Z-score normalization):当数据(x)按均值(μ)中心化后,再按标准差(σ)缩放,数据就会服从为均值为0,方差为1的正态分布(即标准正态分布),公式如下:

x ∗ = x − μ σ x^* = \frac {x - \mu} {\sigma} x∗=σx−μ​

from sklearn.preprocessing import StandardScaler

data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

scaler = StandardScaler() #实例化

scaler.fit(data) #fit,本质是生成均值和方差

scaler.mean_ #查看均值的属性mean_

array([-0.125, 9. ])

scaler.var_ #查看方差的属性var_

array([ 0.546875, 35. ])

x_std = scaler.transform(data) #通过接口导出结果

x_std.mean() #导出的结果是一个数组,用mean()查看均值

0.0

x_std.std() #用std()查看方差

#1.0

scaler.fit_transform(data) #使用fit_transform(data)一步达成结果

“”"

array([[-1.18321596, -1.18321596],

[-0.50709255, -0.50709255],

[ 0.16903085, 0.16903085],

[ 1.52127766, 1.52127766]])

“”"

scaler.inverse_transform(x_std) #使用inverse_transform逆转标准化

“”"

array([[-1. , 2. ],

[-0.5, 6. ],

[ 0. , 10. ],

[ 1. , 18. ]])

“”"

对于StandardScaler和MinMaxScaler来说,空值NaN会被当做是缺失值

  • 在fit的时候忽略

  • 在transform的时候保持缺失NaN的状态显示

尽管去量纲化过程不是具体的算法,但在fit接口中,依然只允许导入至少二维数组,一维数组导入会报错。通常来说,我们输入的X会是我们的特征矩阵,现实案例中特征矩阵不太可能是一维所以不会存在这个问题。

StandardScaler 和 MinMaxScaler 如何选择?

看情况

  • 大多数机器学习算法中,会选择StandardScaler进行特征缩放,因为MinMaxScaler对异常值非常敏感

  • 在PCA,聚类,逻辑回归,支持向量机,神经网络这些算法中,StandardScaler往往是最好的选择

MinMaxScaler在不涉及距离度量、梯度、协方差计算以及数据需要被压缩到特定区间时使用广泛,比如数字图像处理中量化像素强度时,都会使用MinMaxScaler将数据压缩于[0,1]区间之中。

建议先试试看StandardScaler,效果不好换MinMaxScaler。

除了StandardScaler和MinMaxScaler之外,sklearn中也提供了各种其他缩放处理(中心化只需要一个pandas广播一下减去某个数就好了,因此sklearn不提供任何中心化功能)

  • 在希望压缩数据,却不影响数据的稀疏性时(不影响矩阵中取值为0的个数时),我们会使用MaxAbsScaler

  • 在异常值多,噪声非常大时,我们可能会选用分位数来无量纲化,此时使用RobustScaler

  • 更多详情请参考以下列表:

在这里插入图片描述

缺失值


机器学习和数据挖掘中所使用的数据,永远不可能是完美的。很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的情况。因此,数据预处理中非常重要的一项就是处理缺失值


我们采用从泰坦尼克号提取出来的数据,这个数据有三个特征,如下:

  • Age 数值型

  • Sex 字符型

  • Embarked 字符型

import pandas as pd

#index_col=0是因为原数据中第1列本就是索引

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

在这里插入图片描述

缺失值填补 impute.SimpleImputer

class sklearn.impute.SimpleImputer (

missing_values=nan,

strategy=‘mean’,

fill_value=None,

verbose=0,

copy=True

)

这个类是专门用来填补缺失值的。它包括四个重要参数:

  • missing_values

告诉SimpleImputer,数据中的缺失值长什么样,默认空值np.nan

  • strategy

我们填补缺失值的策略,默认均值

输入"mean"使用均值填补(仅对数值型特征可用)

输入"median"用中值填补(仅对数值型特征可用)

输入"most_frequent"用众数填补(对数值型和字符型特征都可用)

输入"constant"表示请参考参数"fill_value"中的值(对数值型和字符型特征都可用)

  • fill_value

当参数startegy为"constant"的时候可用,可输入字符串或数字表示要填充的值,常用0

  • copy

默认为True,将创建特征矩阵的副本,反之则会将缺失值填补到原本的特征矩阵中去

import pandas as pd

#index_col=0是因为原数据中第1列本就是索引

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

data.info()

由运行结果可知Age和Embarked有缺失值

“”"

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 891 entries, 0 to 890

Data columns (total 4 columns):

Column Non-Null Count Dtype


0 Age 714 non-null float64

1 Sex 891 non-null object

2 Embarked 889 non-null object

3 Survived 891 non-null object

dtypes: float64(1), object(3)

memory usage: 34.8+ KB

“”"

查看数据

Age = data.loc[:,“Age”].values.reshape(-1,1) #sklearn当中特征矩阵必须是二维

Age[:20]

“”"

array([[22.],

[38.],

[26.],

[35.],

[35.],

[nan],

[54.],

[ 2.],

[27.],

[14.]])

“”"

用各个值填补演示:

#填补年龄, 分别用均值、中位数、0填补

from sklearn.impute import SimpleImputer

imp_mean = SimpleImputer() #实例化,默认均值填补

imp_median = SimpleImputer(strategy=“median”) #用中位数填补

imp_0 = SimpleImputer(strategy=“constant”,fill_value=0) #用0填补

#fit_transform一步完成调取结果

imp_mean = imp_mean.fit_transform(Age) #均值填补

imp_median = imp_median.fit_transform(Age) #中值填补

imp_0 = imp_0.fit_transform(Age) # 使用0填补

imp_mean[:20] # 查看用均值填补后的前20条数据

imp_median[:10] # 查看用中值填补后的前20条数据

imp_0[:10] # 查看用0填补后的前20条数据

在这里我们用中位数填补Age,用众数填补Embarked:

#在这里我们使用中位数填补Age

data.loc[:,“Age”] = imp_median

#data.info()

#使用众数填补Embarked

Embarked = data.loc[:,“Embarked”].values.reshape(-1,1)

imp_mode = SimpleImputer(strategy = “most_frequent”)

data.loc[:,“Embarked”] = imp_mode.fit_transform(Embarked)

data.info() #

由结果可知填补已经完成了

“”"

<class ‘pandas.core.frame.DataFrame’>

Int64Index: 891 entries, 0 to 890

Data columns (total 4 columns):

Column Non-Null Count Dtype


0 Age 891 non-null float64

1 Sex 891 non-null object

2 Embarked 891 non-null object

3 Survived 891 non-null object

dtypes: float64(1), object(3)

memory usage: 34.8+ KB

“”"

data.head(20) #显示填补后的前20条数据

用Pandas和Numpy进行填补其实更加简单

import pandas as pd

data = pd.read_csv(r"…\datasets\Narrativedata.csv",index_col=0)

data.head()

data.loc[:,“Age”] = data.loc[:,“Age”].fillna(data.loc[:,“Age”].median())

#.fillna 在DataFrame里面直接进行填补

data.dropna(axis=0,inplace=True)

#.dropna(axis=0)删除所有有缺失值的行,.dropna(axis=1)删除所有有缺失值的列

#参数inplace,为True表示在原数据集上进行修改,为False表示生成一个复制对象,不修改原数据,默认False

处理分类型特征:编码与哑变量


在机器学习中,大多数算法等都只能够处理数值型数据,不能处理文字。在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型)

然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的:

  • 学历的取值可以是 [“小学”,“初中”,“高中”,“大学”]

  • 付费方式可能包含 [“支付宝”,“现金”,“微信”]

在这种情况下,为了让数据适应算法和库,我们必须将数据进行编码,也就是要将文字型数据转换为数值型

preprocessing.LabelEncoder 标签专用,将分类转换为分类数值

from sklearn.preprocessing import LabelEncoder

y = data.iloc[:,-1] #要输入的是标签,不是特征矩阵,所以允许一维

#进行编码

le = LabelEncoder() #实例化

le = le.fit(y) #导入数据

label = le.transform(y) #transform接口调取结果

#label #查看获取的结果label

#le.classes_ #属性.classes_查看标签中究竟有多少类别

“”"

array([‘No’, ‘Unknown’, ‘Yes’], dtype=object)

“”"

#le.fit_transform(y) #也可以直接fit_transform一步到位,但是不能查看属性classes_

#le.inverse_transform(label) #使用inverse_transform可以逆转

data.iloc[:,-1] = label #让标签等于我们运行出来的结果

#data.head()

以上代码可以用1步完成:

from sklearn.preprocessing import LabelEncoder

data.iloc[:,-1] = LabelEncoder().fit_transform(data.iloc[:,-1])

preprocessing.OrdinalEncoder 特征专用,将分类特征转换为分类数值

from sklearn.preprocessing import OrdinalEncoder

data_ = data.copy()

#data_.head()

#接口categories_对应LabelEncoder的接口classes_,一模一样的功能

#OrdinalEncoder().fit(data_.iloc[:,1:-1]).categories_

data_.iloc[:,1:-1] = OrdinalEncoder().fit_transform(data_.iloc[:,1:-1])

#data_.head()

preprocessing.OneHotEncoder 独热编码,创建哑变量

我们刚才已经用OrdinalEncoder把分类变量Sex和Embarked都转换成数字对应的类别了。在舱门Embarked这一列中,我们使用 [0,1,2] 代表了三个不同的舱门,然而这种转换是正确的吗?

我们来思考三种不同性质的分类数据:

  1. 舱门(S,C,Q)

三种取值S,C,Q是相互独立的,彼此之间完全没有联系,表达的是 S≠C≠Q 的概念。这是名义变量

  1. 学历(小学,初中,高中)

三种取值不是完全独立的,我们可以明显看出,在性质上可以有高中>初中>小学这样的联系,学历有高低,但是学历取值之间却不是可以计算的,我们不能说小学 + 某个取值 = 初中。这是有序变量

  1. 体重(>45kg,>90kg,>135kg)

各个取值之间有联系,且是可以互相计算的,比如135kg - 45kg = 90kg,分类之间可以通过数学计算互相转换。这是有距变量

然而在对特征进行编码的时候,这三种分类数据都会被我们转换为 [0,1,2],这三个数字在算法看来,是连续且可以计算的,这三个数字相互不等,有大小,并且有着可以相加相乘的联系。所以算法会把舱门,学历这样的分类特征,都误会成是体重这样的分类特征。我们把分类转换成数字的时候,忽略了数字中自带的数学性质,所以给算法传达了一些不准确的信息,这会影响我们的建模。

OrdinalEncoder可以用来处理有序变量,但对于名义变量,我们只有使用哑变量的方式来处理,才能够尽量向算法传达最准确的信息:

在这里插入图片描述

这样的变化,让算法能够彻底领悟,原来三个取值是没有可计算性质的,是“有你就没有我”的不等概念。在我们的数据中,性别和舱门,都是这样的名义变量。因此我们需要使用独热编码,将两个特征都转换为哑变量。

#data.head()

from sklearn.preprocessing import OneHotEncoder

X = data.iloc[:,1:-1]

enc = OneHotEncoder(categories=‘auto’).fit(X)

result = enc.transform(X).toarray()

#result

#依然可以直接一步到位,但为了给大家展示模型属性,所以还是写成了三步

#OneHotEncoder(categories=‘auto’).fit_transform(X).toarray()

#依然可以还原

#pd.DataFrame(enc.inverse_transform(result))

#enc.get_feature_names()

#result

#result.shape

#axis=1,表示跨行进行合并,也就是将量表左右相连,如果是axis=0,就是将量表上下相连

newdata = pd.concat([data,pd.DataFrame(result)],axis=1)

newdata.head()

newdata.drop([“Sex”,“Embarked”],axis=1,inplace=True)

newdata.columns = [“Age”,“Survived”,“Female”,“Male”,“Embarked_C”,“Embarked_Q”,“Embarked_S”]

newdata.head()

总结

在这里插入图片描述

数据类型以及常用的统计量

在这里插入图片描述

处理连续型特征:二值化与分段


sklearn.preprocessing.Binarizer 根据阈值将数据二值化

根据阈值将数据二值化(将特征值设置为0或1),用于处理连续型变量。大于阈值的值映射为1,而小于或等于阈值的值映射为0。默认阈值为0时,特征中所有的正值都映射到1。二值化是对文本计数数据的常见操作,分析人员可以决定仅考虑某种现象的存在与否。它还可以用作考虑布尔随机变量的估计器的预处理步骤(例如,使用贝叶斯设置中的伯努利分布建模)。

#将年龄二值化

data_2 = data.copy()

#data_2

from sklearn.preprocessing import Binarizer

X = data_2.iloc[:,0].values.reshape(-1,1) #类为特征专用,所以不能使用一维数组

transformer = Binarizer(threshold=30).fit_transform(X)

#transformer

preprocessing.KBinsDiscretize

这是将连续型变量划分为分类变量的类,能够将连续型变量排序后按顺序分箱后编码。

总共包含三个重要参数:

在这里插入图片描述

from sklearn.preprocessing import KBinsDiscretizer

X = data.iloc[:,0].values.reshape(-1,1)

est = KBinsDiscretizer(n_bins=3, encode=‘ordinal’, strategy=‘uniform’)

est.fit_transform(X)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后:学习总结——MyBtis知识脑图(纯手绘xmind文档)

学完之后,若是想验收效果如何,其实最好的方法就是可自己去总结一下。比如我就会在学习完一个东西之后自己去手绘一份xmind文件的知识梳理大纲脑图,这样也可方便后续的复习,且都是自己的理解,相信随便瞟几眼就能迅速过完整个知识,脑补回来。下方即为我手绘的MyBtis知识脑图,由于是xmind文件,不好上传,所以小编将其以图片形式导出来传在此处,细节方面不是特别清晰。但可给感兴趣的朋友提供完整的MyBtis知识脑图原件(包括上方的面试解析xmind文档)

image

除此之外,前文所提及的Alibaba珍藏版mybatis手写文档以及一本小小的MyBatis源码分析文档——《MyBatis源码分析》等等相关的学习笔记文档,也皆可分享给认可的朋友!

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!**

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后:学习总结——MyBtis知识脑图(纯手绘xmind文档)

学完之后,若是想验收效果如何,其实最好的方法就是可自己去总结一下。比如我就会在学习完一个东西之后自己去手绘一份xmind文件的知识梳理大纲脑图,这样也可方便后续的复习,且都是自己的理解,相信随便瞟几眼就能迅速过完整个知识,脑补回来。下方即为我手绘的MyBtis知识脑图,由于是xmind文件,不好上传,所以小编将其以图片形式导出来传在此处,细节方面不是特别清晰。但可给感兴趣的朋友提供完整的MyBtis知识脑图原件(包括上方的面试解析xmind文档)

[外链图片转存中…(img-zj2d8NtQ-1713516916352)]

除此之外,前文所提及的Alibaba珍藏版mybatis手写文档以及一本小小的MyBatis源码分析文档——《MyBatis源码分析》等等相关的学习笔记文档,也皆可分享给认可的朋友!

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

  • 9
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值