3行Python代码搞定图片清晰度识别,你肉眼看见的未必是真的!

本文介绍如何利用Python的OpenCV库通过拉普拉斯算子检测图片清晰度。核心思想是通过计算灰度图像的拉普拉斯变换的方差来判断图片是否模糊。代码简洁高效,仅需三行即可实现。
摘要由CSDN通过智能技术生成

这种方法凑效的原因就在于拉普拉斯算子定义本身。它被用来测量图片的二阶导数,突出图片中强度快速变化的区域,和 Sobel 以及 Scharr 算子十分相似。并且,和以上算子一样,拉普拉斯算子也经常用于边缘检测。此外,此算法基于以下假设:如果图片具有较高方差,那么它就有较广的频响范围,代表着正常,聚焦准确的图片。但是如果图片具有有较小方差,那么它就有较窄的频响范围,意味着图片中的边缘数量很少。正如我们所知道的,图片越模糊,其边缘就越少。

有了代表清晰度的值,剩下的工作就是设定相应的阀值,如果某图片方差低于预先定义的阈值,那么该图片就可以被认为是模糊的,高于阈值,就不是模糊的。

实操

原理看起来比较复杂,涉及到很多信号啊图片处理的相关知识,下面我们来实操一下,直观感受下。

由于人生苦短,以及我个人是朋友圈第一 Python 吹子,我选择使用 Python 来实现,核心代码简单到令人发指:

import cv2

def getImageVar(imgPath):

image = cv2.imread(imgPath);

img2gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

imageVar = cv2.Laplacian(img2gray, cv2.CV_64F).var()

return imageVar

真是人生苦短啊,核心代码就三行,简单解释下。

import cv2使用了一个著名的图像处理库 OpenCV,关于 OpenCV 的安装这里不多赘述,需要注意的是它依赖 numpy。

imag

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值