Observable.create(new ObservableOnSubscribe() {
@Override
public void subscribe(ObservableEmitter emitter) throws Exception {
for (int i = 0; ; i++) { //无限循环发事件
emitter.onNext(i);
Thread.sleep(1000);
}
}
}).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer() {
@Override
public void accept(Integer integer) throws Exception {
Log.d(TAG, “” + integer);
}
});
这样来看,我的内存就稳定,老铁稳。
那么,试试第二种方法,下游少接收点事件
//定时取样
Observable.create(new ObservableOnSubscribe() {
@Override
public void subscribe(ObservableEmitter emitter) throws Exception {
for (int i = 0; ; i++) { //无限循环发事件
emitter.onNext(i);
}
}
}).sample(1, TimeUnit.SECONDS)
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer() {
@Override
public void accept(Integer integer) throws Exception {
Log.d(TAG, “” + integer);
}
});
或者是用过滤操作符,过滤掉一些上游事件
//过滤器 过滤操作
Observable.create(new ObservableOnSubscribe() {
@Override
public void subscribe(ObservableEmitter emitter) throws Exception {
for (int i = 0; ; i++) { //无限循环发事件
emitter.onNext(i);
}
}
}).filter(new Predicate() {
@Override
public boolean test(Integer integer) throws Exception {
return integer % 100 == 0;
}
})
.subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Consumer() {
@Override
public void accept(Integer integer) throws Exception {
Log.d(TAG, “” + integer);
}
});
背压策略
上面唠唠叨叨说了那么多,基本上也给大家阐明了阻塞形成的原因和解决阻塞的方法,基本策略就是减少发送事件的频率和减少发送事件的数量。
But……
我们手动让上游发送事件的速度满下来貌似是不可取的,你想让上游的速度十多快呢?上游需要等多久呢?
还有……
我们依旧无法知道下游处理事件的能力,无法很好地处理阻塞的事件。
当然,你们肯定会说RxJava2.0不是很好地支了背压了吗?是的,确实比较好地对阻塞做了处理,咱们来看下吧。
在RxJava2.0中官方,推出了Flowable 和Subscriber用来支持背压,同样的去除了Observable对背压的支持,对的就像你上面看到的,Observable不再支持背压了,即使阻塞崩溃也不会抛出MissingBackpressureException
还是上代码看看,Flowable的用法吧。
Flowable.create(FlowableOnSubscribe source, BackpressureStrategy mode)
创建Flowable会默认让传入一个FlowableOnSubscribe和一个BackpressureStrategy,FlowableOnSubscribe很好理解就是一个就是Flowable的一个被观察者源,而BackpressureStrategy就是Flowable提供的背压策略
有哪些策略还是上源码看下吧:
public enum BackpressureStrategy {
/**
- OnNext events are written without any buffering or dropping.
- Downstream has to deal with any overflow.
-
Useful when one applies one of the custom-parameter onBackpressureXXX operators.
/
MISSING,
/*
- Signals a MissingBackpressureException in case the downstream can’t keep up.
/
ERROR,
/* - Buffers all onNext values until the downstream consumes it.
/
BUFFER,
/* - Drops the most recent onNext value if the downstream can’t keep up.
/
DROP,
/* - Keeps only the latest onNext value, overwriting any previous value if the
- downstream can’t keep up.
*/
LATEST
}
MISSING:
如果流的速度无法保持同步,可能会抛出MissingBackpressureException或IllegalStateException。
BUFFER
上游不断的发出onNext请求,直到下游处理完,也就是和Observable一样了,缓存池无限大,最后直到程序崩溃
ERROR
会在下游跟不上速度时抛出MissingBackpressureException。
DROP
会在下游跟不上速度时把onNext的值丢弃。
LATEST
会一直保留最新的onNext的值,直到被下游消费掉。
先不看上面的策略,我们最起码先看看Flowable怎么用吧
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter e) throws Exception {
Log.d(TAG, “emit 1”);
emitter.onNext(1);
Log.d(TAG, “emit 2”);
emitter.onNext(2);
Log.d(TAG, “emit 3”);
emitter.onNext(3);
Log.d(TAG, “emit complete”);
emitter.onComplete();
}
}, BackpressureStrategy.ERROR).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
}
@Override
public void onNext(Integer s) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.d(TAG, “onError”+t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
上游 Flowable 构建FlowableEmitter用来发送上游事件,这里的背压策略我们采用ERROR,下游方法中出现了一个和原来
@Override
public void onSubscribe(Subscription s) {
}
Subscription.java
public interface Subscription {
public void request(long n);
public void cancel();
}
这里需要重点说明一下,在Flowable中背压采取拉取响应的方式来进行水流控制,也就是说Subscription是控制上下游水流的主要方式,一般的,我们需要调用Subscription.request()来传入一个下游目前能处理的事件的数量
那么,我们不传会怎么样?
备注:这里上下游是在不同的线程里进行的,如果在同一个线程里,它也会抛出一个MissingBackpressureException,让你去设置 调用request()方法
咦,我上游发送的事件,下游一个没收到啊
那么也就是说上游不能发射事件,是因为你没有调用request方法,因为你不调用request()上游不知道下游能处理事件的能力啊。
那么,也就是说我必须要调用request方法咯,那么我们就调用一下喽,官方说默认推荐使用Long.MAX_VALUE。
好吧,那么我们来试下吧,加上如下代码。
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE); //下游处理事件能力值
}
咦,还真正常了啊。
那么,我们设置个2试试?
s.request(2);
也就是说我们下游告诉上游我们能处理2个事件,这样上游就缓存池中取出了2个事件给发送给了下游。这点相比Rxjava1.0可以说是智能了很多,并不会一股脑的抛给下游而是又下游来主动拉取事件。
ERROR
Flowable既然可以跑了,那么咱们就来试试背压吧,我们还是采用BackpressureStrategy.ERROR这个策略,如果下游处理不过来就抛出异常。
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter emitter) throws Exception {
for (int i = 0;i< 128; i++) {
Log.d(TAG, "emit " + i);
emitter.onNext(i);
}
}
}, BackpressureStrategy.ERROR).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, “onSubscribe”);
}
@Override
public void onNext(Integer integer) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.w(TAG, "onError: ", t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
我们,首先让上游发送128个事件,下游不做处理,恩好吧是正常的
现在我们把128改成129,怎么就异常了呢?
好吧,还是看源码吧
纳尼,原来Flowable的缓存池的最大大小是128吧,如果缓存池里有超过128个事件就会抛出异常,提示你去处理这些事件。
MISSING
那么,MISSING和ERROR有什么区别呢?
我们把缓存策略设置为BackpressureStrategy.MISSING试一下
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter emitter) throws Exception {
for (int i = 0;i< 129; i++) {
Log.d(TAG, "emit " + i);
emitter.onNext(i);
}
}
}, BackpressureStrategy.MISSING).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, “onSubscribe”);
subscription = s;
}
@Override
public void onNext(Integer integer) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.w(TAG, "onError: ", t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
结构还是一样的,不过这次很友好的提示你队列满了
io.reactivex.exceptions.MissingBackpressureException: Queue is full?!
下面是MISSING策略的备注:
/**
- OnNext events are written without any buffering or dropping.
- Downstream has to deal with any overflow.
-
Useful when one applies one of the custom-parameter onBackpressureXXX operators.
*/
也就是说,这种策略是不丢弃,不缓存的策略,那么我要你也没什么用啊…………
BUFFER
BUFFER是一个无限大的缓存池,也就是说我们可以往里面存储无限多的事件
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter emitter) throws Exception {
for (int i = 0;i<129 ; i++) {
Log.d(TAG, "emit " + i);
emitter.onNext(i);
}
}
}, BackpressureStrategy.BUFFER).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, “onSubscribe”);
}
@Override
public void onNext(Integer integer) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.w(TAG, "onError: ", t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
但是,如果我们发送无数多的事件,同样要注意内存情况。
DROP和LATEST
首先我们看下Drop
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter emitter) throws Exception {
Log.d(TAG, "requested: " + emitter.requested());
for (int i = 0; ; i++) {
emitter.onNext(i);
}
}
}, BackpressureStrategy.DROP).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, “onSubscribe”);
subscription = s;
}
@Override
public void onNext(Integer integer) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.w(TAG, "onError: ", t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
我们把对象subscription放到外面,在外面调用request方法(让事件往下面传递,上面说过!!!),看下输出情况。
每次点击界面上的按钮触发下面的操作。
假装有按钮
subscription.request(64);
可以看到,刚进入时打印了当前的request大小,默认为缓存池的大小128.
当我们点击按钮触发subscription.request(64)时,它会从缓存池中取出64个事件发送给下游,当我们呢再次点击,它又取出了64条。但是,当我们第三次点击按钮时,看到了上面令我们诧异的结果。为什么呢?
FLowable内部的默认的水缸大小为128, 因此, 它刚开始肯定会把0-127这128个事件保存起来, 然后丢弃掉其余的事件, 当我们request(64)的时候,下游便会处理掉这64个事件,当第二次请求时把水缸里剩余的64个事件清空, 那么上游水缸中又会重新装进新的128个事件。
也就是说,我先存128个,当这128个被清空后从新再装进128吧,那么中间这个过程中上游发送的事件,下游就给全部丢掉了。
再来看下LATEST
其实,LATEST和DROP很像都是存不下可就不存,丢事件呗,但是LATEST存储的是最后发送的事件。
Flowable.create(new FlowableOnSubscribe() {
@Override
public void subscribe(FlowableEmitter emitter) throws Exception {
Log.d(TAG, "requested: " + emitter.requested());
for (int i = 0;i<1000 ; i++) {
emitter.onNext(i);
}
}
}, BackpressureStrategy.LATEST).subscribeOn(Schedulers.io())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(new Subscriber() {
@Override
public void onSubscribe(Subscription s) {
Log.d(TAG, “onSubscribe”);
subscription = s;
}
@Override
public void onNext(Integer integer) {
Log.d(TAG, "onNext: " + integer);
}
@Override
public void onError(Throwable t) {
Log.w(TAG, "onError: ", t);
}
@Override
public void onComplete() {
Log.d(TAG, “onComplete”);
}
});
仅仅把策略改成了LATEST,把事件循环设成了1000(因为不设置成固定值,将无法比较和Drop的区别),因为它只保存最后发送的事件
重要知识点
下面是有几位Android行业大佬对应上方技术点整理的一些进阶资料。
高级进阶篇——高级UI,自定义View(部分展示)
UI这块知识是现今使用者最多的。当年火爆一时的Android入门培训,学会这小块知识就能随便找到不错的工作了。不过很显然现在远远不够了,拒绝无休止的CV,亲自去项目实战,读源码,研究原理吧!
- 面试题部分合集
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!
te");
}
});
仅仅把策略改成了LATEST,把事件循环设成了1000(因为不设置成固定值,将无法比较和Drop的区别),因为它只保存最后发送的事件
重要知识点
下面是有几位Android行业大佬对应上方技术点整理的一些进阶资料。
[外链图片转存中…(img-8f3Lu5Br-1715140741021)]
高级进阶篇——高级UI,自定义View(部分展示)
UI这块知识是现今使用者最多的。当年火爆一时的Android入门培训,学会这小块知识就能随便找到不错的工作了。不过很显然现在远远不够了,拒绝无休止的CV,亲自去项目实战,读源码,研究原理吧!
[外链图片转存中…(img-749EeyiR-1715140741022)]
- 面试题部分合集
[外链图片转存中…(img-ozaD5pFK-1715140741022)]
《Android学习笔记总结+移动架构视频+大厂面试真题+项目实战源码》,点击传送门,即可获取!