props.put(“group.id”, “szz-local-consumer”);
props.put(“enable.auto.commit”, “true”);
props.put(“auto.commit.interval.ms”, “5000”);
props.put(“key.deserializer”, “org.apache.kafka.common.serialization.StringDeserializer”);
props.put(“value.deserializer”, “org.apache.kafka.common.serialization.StringDeserializer”);
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList(“szz1-test-topic”));
while (true) {
Duration duration = Duration.ofSeconds(5);
ConsumerRecords<String, String> records = consumer.poll(duration);
for (ConsumerRecord<String, String> record : records){
System.out.printf(“------offset-- = %d, key = %s, value = %s%n”, record.offset(), record.key(), record.value());
}
}
}
假如Consumer在获取了消息消费成功但是在提交之前服务挂掉了
如果发生这种情况会有什么影响? 答: 重复消费
消费者消费之后 offset并没有及时更新过去,那么在下次启动或者同组内其他消费者去消费的时候 取到的数据就是之前的数据;
那么就会出现 重复消费的情况;
所以auto.commit.interval.ms
到底设置成多少就很有考究了
虽然自动提交 offset 十分简介便利,但由于其是基于时间提交的,开发人员难以把握 offset 提交的时机。因此 Kafka 还提供了手动提交 offset 的 API。
手动提交 offset 的方法有两种:分别是 commitSync(同步提交)
和 commitAsync(异步 提交)
。两者的相同点是,都会将本次poll 的一批数据最高的偏移量提交
;不同点是, commitSync
阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致, 也会出现提交失败);而commitAsync
则没有失败重试机制,故有可能提交失败。