RDD2022数据集(路面病害检测)-中国数据总结

  RDD2022(文献[1])数据集包含了六个国家的道路缺陷数据,分别是中国、日本、捷克、挪威、美国、印度,如图1所示。

 图1 提供数据的国家列表

   数据集下载地址:地址,如图2所示。

图2 RDD2022下载地址

  该数据集总共包含了47420张图片以及每张图片对应的xml标签,为研究团队进行目标分类、目标检测、语义分割等工作提供了方便。

  由于计算资源有限,同时中国部分包含了4878张图片足够支持本课题进行目标检测方向的深入研究,因此本文选择中国的数据支撑验证实验。

  中国数据分为两部分:China_M和China_D。China_M由摩托车上装置智能手机拍摄得到,China_D中的图片由无人机搭载摄像头拍摄得到。每部分又分为训练图片、测试图片、训练标签,具体描述如图3所示。

图3 China_M和China_D具体描述

  数据集中有五种标签,分别是D00(纵向裂缝)、D10(横向裂缝)、D20(网状裂缝)、D40(坑洞)、Repair(修复)。标签及示例图片如图4所示。(来自文献[2],该文献用的是China_D数据集)。

图4 标签及示例图片 

  在China_M和China_D中每种标签对应的样本数量如图5所示。

图5 样本数量

  统计如下:D00合计4104个;D10合计2359个。D20合计934个。D40合计321个。该图没有统计Repair类型,通过代码统计Repair合计1046个,如表1所示。

类型合计
D004104
D102359
D20934
D40321
Repair1046

表1 样本统计

  数据集中有五张背景图片(没有进行标注),分别是China_Drone_000170、China_Drone_000218、
China_Drone_000256、China_Drone_001134、China_Drone_001391(这五张看起来也是有缺陷的,不知道是漏了,还是说当背景?有知道的朋友可以在评论区说明,感谢)

 

(2025-5-21 答辩通过,准备毕业了。祝还在读研的同学学业顺利,天天开心。)

参考文献:

[1] Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., & Sekimoto, Y. (2022, January 1). RDD2022: A multi-national image dataset for automatic Road Damage Detection [Online post]. arXiv.Org. https://doi.org/10.48550/arxiv.2209.08538

[2] 张艳君, 沈平, 郭安辉, & 高博. (2023). 融合 CBAM-YOLOv7 模型的路面缺陷智能检测方法研究. 重庆理工大学学报(自然科学)38(05), 321.

 

 

 

 

 

评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值