RDD2022数据集(路面病害检测)-中国数据总结

  RDD2022(文献[1])数据集包含了六个国家的道路缺陷数据,分别是中国、日本、捷克、挪威、美国、印度,如图1所示。

 图1 提供数据的国家列表

   数据集下载地址:地址,如图2所示。

图2 RDD2022下载地址

  该数据集总共包含了47420张图片以及每张图片对应的xml标签,为研究团队进行目标分类、目标检测、语义分割等工作提供了方便。

  由于计算资源有限,同时中国部分包含了4878张图片足够支持本课题进行目标检测方向的深入研究,因此本文选择中国的数据支撑验证实验。

  中国数据分为两部分:China_M和China_D。China_M由摩托车上装置智能手机拍摄得到,China_D中的图片由无人机搭载摄像头拍摄得到。每部分又分为训练图片、测试图片、训练标签,具体描述如图3所示。

图3 China_M和China_D具体描述

  数据集中有五种标签,分别是D00(纵向裂缝)、D10(横向裂缝)、D20(网状裂缝)、D40(坑洞)、Repair(修复)。标签及示例图片如图4所示。(来自文献[2],该文献用的是China_D数据集)。

图4 标签及示例图片 

  在China_M和China_D中每种标签对应的样本数量如图5所示。

图5 样本数量

  统计如下:D00合计4104个;D10合计2359个。D20合计934个。D40合计321个。该图没有统计Repair类型,通过代码统计Repair合计1046个,如表1所示。

类型合计
D004104
D102359
D20934
D40321
Repair1046

表1 样本统计

  数据集中有五张背景图片(没有进行标注),分别是China_Drone_000170、China_Drone_000218、
China_Drone_000256、China_Drone_001134、China_Drone_001391(这五张看起来也是有缺陷的,不知道是漏了,还是说当背景?有知道的朋友可以在评论区说明,感谢)


  已经做好中国部分的数据集:百度网盘链接:链接,提取码:1234

  数据集内容说明:将china_drone数据集中的test文件夹下的图片加上五张没有标注的图片作为测试集,一共505张。其余的图片3410张划分到测试集,963张划分到验证集。大致符合7:2:1的比例。标签格式包含了PAS_VOC格式和YOLO格式。文件夹结构如图6所示。

图6 文件夹结构

参考文献:

[1] Arya, D., Maeda, H., Ghosh, S. K., Toshniwal, D., & Sekimoto, Y. (2022, January 1). RDD2022: A multi-national image dataset for automatic Road Damage Detection [Online post]. arXiv.Org. https://doi.org/10.48550/arxiv.2209.08538

[2] 张艳君, 沈平, 郭安辉, & 高博. (2023). 融合 CBAM-YOLOv7 模型的路面缺陷智能检测方法研究. 重庆理工大学学报(自然科学)38(05), 321.

### RDD2022 数据集简介 RDD2022 是一项专注于道路缺陷检测的研究项目所使用的公开数据集。该数据集收集了来自多个国家的实际道路图像,旨在帮助研究人员开发更高效的算法用于自动化识别和分类各种类型的路面损坏情况[^3]。 #### 数据集组成 此数据集中涵盖了六个不同国家的道路状况样本,具体包括中国、日本、捷克共和国、挪威、美国以及印度等地采集的信息。这些多样化的地理来源有助于提升模型训练过程中对于全球范围内各类环境条件适应性的考量。 #### 获取方式 为了获取完整的 RDD2022 数据集及其相关内容,请访问其官方站点链接如下: - **官方网站**: [https://crddc2022.sekilab.global/](https://crddc2022.sekilab.global/) 在此页面上注册账户并登录之后即可获得进一步指导以完成最终的数据下载过程[^1]。 另外还可以通过另一个资源渠道了解最新版本的大规模数据详情: - **IEEE 大会资料页**: [Data | 2022 IEEE International Conference on Big Data](http://ieee-dataport.org/open-access/data-road-defect-detection-challenge-rdd2022) 上述两个入口均能提供关于如何取得所需材料的具体指南与实际文件位置信息[^2]。 ```python import requests from bs4 import BeautifulSoup def fetch_dataset_info(url): response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') title = soup.find('title').text.strip() links = [] for a_tag in soup.find_all('a', href=True): link_text = a_tag.text.strip() url = a_tag['href'] if not (url.startswith('#') or url.endswith('.css')): links.append((link_text, url)) return {'Title': title, 'Links':links} website_url = "https://crddc2022.sekilab.global/" info = fetch_dataset_info(website_url) print(info) ``` 以上脚本可用于初步爬取目标网站上的基本信息及导航选项,便于快速定位至具体的下载区域或文档描述部分。
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值