基于分块压缩感知与自适应分辨率调控的快速 SAR 成像

基于分块压缩感知与自适应分辨率调控的快速 SAR 成像 算法

引言 传统 SAR 成像算法(如 RDA、CSA)在处理大场景或高分辨率需求时面临计算复杂度高、 内存占用大的问题,尤其在地基雷达应用中,平台静止导致合成孔径时间短,对算法实时性要求 更高。现有改进算法虽在速度或分辨率上有所优化,但往往难以兼顾二者。结合实测数据特点及 通信协议中的高效数据传输机制,提出本文创新点。 1. 分块压缩感知(Block Compressed Sensing, BCS)加速成像,将雷达回波数据按 PRT 帧 (协议中定义的帧结构)分块处理,利用压缩感知理论对每帧数据独立稀疏采样,减少单次处理数 据量。结合协议中“帧计数”信息,动态分配计算资源,避免全局重构的高复杂度。优势是数据 量减少,显著降低 FFT 和匹配滤波的计算负载,提升成像速度,同时通过分块重构保证局部分 辨率。 2. 自适应分辨率调控机制,根据协议中“状态信息查询”反馈的实时参数(如信号带宽、脉 宽、温度等),动态调整压缩感知的采样率和迭代次数。在射频模块温度升高(协议字段 11 13) 时,降低非关键区域的采样率以优先保障核心区域高分辨。优势是在硬件资源受限时,通过智能 资源分配平衡速度与分辨率,实测数据验证显示关键区域 PSNR 提升。 3. 基于协议端口的高效数据流协同,利用协议中命令端口(4015)与数据端口(4016)分离 的特性,设计异步流水线处理架构。在接收数据帧(端口 4016)的同时,通过命令端口实时调整 成像参数,减少等待延迟。优势是整体成像时间缩短,尤其适合地基雷达连续采集场景。 2 基于分块压缩感知与自适应分辨率调控的快速 SAR 成像算法 理论与实现 2.1 分块压缩感知(BCS)理论与实现 原始 SAR 算法通常对整幅数据直接处理,分块压缩感知加速成像算法是在其基础上,引入 分块和压缩感知理念。原始 SAR 算法在处理大数据量时计算资源消耗大且成像慢。分块压缩感 知加速成像将数据按 PRT 帧分块,减少单次处理数据量,利用协议“帧计数”动态分配计算资 源,避免全局重构高复杂度,降低 FFT 和匹配滤波计算负载,从而提升成像速度 在压缩感知理论中,存在一个信号 x ∈ RN,该信号在变换域 Ψ 下具有稀疏性,即 x = Ψs。 其中,s 为稀疏向量,其非零元素的个数为 K,且满足 K ≪ N,这意味着信号 x 可由少数非零 1系数表示,体现了信号的稀疏特性。采样过程可通过数学模型 y = Φx 描述,其中 y ∈ RM 是经 过采样后得到的低维信号,由于采样的降维作用,M 小于 N。Φ 是一个 M × N 的采样矩阵,它 决定了从高维信号 x 到低维信号 y 的映射关系,其特性直接影响采样效果和后续信号重构的可行 性。 信号重构的核心目标是从低维采样信号 y 中准确恢复出原始信号 x。依据压缩感知理论,这 一目标可通过求解如下的 l1 范数最小化问题达成:mins ∥s∥1 s.t. y = ΦΨs 该优化问题的含义是在满足 y = ΦΨs 这个约束条件下,寻找使 s 的 l1 范数最小的解。l1 范 数最小化有助于突出稀疏性,使得在众多可能的解中,选择出具有最少非零元素的稀疏解,从而 实现从低维采样数据中有效恢复高维稀疏信号。 这样设计的原因:现实中的很多信号,如 SAR 成像中的回波信号,本身在特定变换域下是稀 疏或可压缩的。利用压缩感知理论,能够在远低于奈奎斯特采样率的情况下对信号进行采样,大 大减少采样数据量,降低数据存储和传输成本。同时,通过求解 l1 范数最小化问题恢复信号,相 较于传统的信号重构方法,在低采样率下能获得更精确的重构结果,为后续的成像处理提供高质 量的数据基础。实现步骤如下。 1. 稀疏变换:以小波变换为例,当对一个长度为 N 的子块数据 x 进行离散小波变换时,其数 学表达为 s = Wx。这里,W 是小波变换矩阵,它将时域信号 x 转换到小波域,使信号在小 波域呈现稀疏特性,便于后续基于稀疏性的处理和分析。 2. 采样矩阵设计: • 高斯随机矩阵:高斯随机矩阵 Φij 的元素服从独立同分布的高斯分布 N (0, 1/M)。这种 分布特性使得高斯随机矩阵在采样过程中能够以较为均匀的方式对信号进行降维,并 且在理论上满足压缩感知的相关条件,为信号的有效采样和重构提供了数学保障。 • 伯努利矩阵:伯努利矩阵的元素以概率 1/2 取值为 1 或 −1。这种简单而特殊的取值方 式使得伯努利矩阵在某些情况下具有计算简便、易于实现等优点,同时也能在一定程度 上满足压缩感知采样矩阵的要求。 3. 重构算法:正交匹配追踪算法(OMP)在每次迭代时,从字典 ΦΨ 中挑选出与当前残差 rk−1 内积最大的原子,以此来更新估计的稀疏向量 ˆsk 和残差 rk。 (a) 初始化:初始残差 r0 = y,这是因为在算法开始时,没有进行任何重构操作,采样信号 y 即为初始残差。估计的稀疏向量 ˆs0 = 0,表示在初始阶段对稀疏向量没有任何先验估 计。 (b) 第 k 次迭代: i. 计算相关系数:ck = (ΦΨ) T rk−1,通过计算相关系数,能够衡量字典 ΦΨ 中每个原 子与当前残差的相似程度,为后续选择原子提供依据。 ii. 选择索引:ik = arg maxi |ck(i)|,该步骤从所有原子中选择与残差内积绝对值最大 的原子索引,即找到与当前残差最匹配的原子。 iii. 更新支撑集:Λk = Λk−1 ∪ {ik},将新选择的原子索引加入到支撑集 Λk 中,支撑集 记录了已选择原子的索引,随着迭代的进行,支撑集逐渐扩大,包含了越来越多对 信号重构有重要作用的原子。 2iv. 求解最小二乘问题:ˆsk = arg minsk ∥y − ΦΨΛk sk∥ 2 2,其中 ΨΛk 是由 Ψ 中对应支撑 集 Λk 的列组成的矩阵。通过求解最小二乘问题,能够在当前支撑集下,找到最优 的稀疏向量估计值,使得重构信号与原始采样信号之间的误差最小。 v. 更新残差:rk = y − ΦΨΛk ˆsk,根据新得到的稀疏向量估计值,更新残差,为下一次 迭代做准备。随着迭代次数的增加,残差逐渐减小,信号重构的精度逐渐提高。 这样设计的原因:选择小波变换进行稀疏变换,是因为小波变换具有良好的时频局部化特性, 能有效捕捉信号的细节特征,对于 SAR 回波信号这种包含丰富细节信息的信号,能在小波域实 现很好的稀疏表示。高斯随机矩阵和伯努利矩阵作为采样矩阵,一方面它们在理论上满足压缩感 知对采样矩阵的要求,能保证信号的可重构性;另一方面,它们的生成方式相对简单,计算复杂 度较低,便于实际应用。OMP 算法作为重构算法,具有计算复杂度适中、重构精度较高的优点, 通过迭代逐步逼近真实的稀疏向量,能够在合理的时间内实现信号的有效重构。 结合帧结构分块, 算法按 PRT 帧分块处理雷达回波数据,根据数据帧格式,每一帧包含 Magic (帧起始标记)、帧长度、帧计数和采集数据等信息。在分块时,利用帧长度信息,以其定义的长 度(假设为 X 字节)为单位进行分块,确保每一块数据对应一个 PRT 的采集数据,即从采集数 据部分按 X - 8 字节进行划分,因为 Magic、帧长度和帧计数共占 8 字节。 利用帧计数动态分配资源, 帧计数用于标记帧与帧的关系,对于不同帧计数的帧数据,依据 系统当前资源状况(如计算资源、内存占用等)动态分配计算资源。对于关键帧(如起始帧或包 含重要数据的帧),分配更多计算资源用于压缩感知处理,保证其成像质量;对于非关键帧,适当 减少资源分配,在保证整体成像效果的前提下提升成像速度。 2.2 自适应分辨率调控理论与实现 原始 SAR 算法在成像时参数固定,自适应分辨率调控机制是对其参数设置方式的改进。原 始 SAR 算法参数无法根据硬件状态和场景需求动态调整,可能造成资源浪费或成像质量差。自 适应分辨率调控机制依据协议“状态信息查询”反馈的实时参数(如信号带宽、温度等),动态调 整压缩感知的采样率和迭代次数,在硬件资源受限时智能分配资源,实现不同场景下成像速度与 分辨率的平衡。 自适应分辨率调控机制主要是为了在 SAR 成像过程中,根据雷达系统的实时状态和环境条 件,动态地调整成像的分辨率,从而在保证成像质量的同时,优化计算资源的使用,提高成像效 率。在实际的 SAR 成像场景中,硬件资源(如计算能力、内存等)往往是有限的。而且不同区域 的成像需求可能不同,例如关键区域(如目标物体所在区域)可能需要高分辨率成像以获取详细 信息,而非关键区域则可以适当降低分辨率以减少计算量。此外,雷达系统的一些实时参数(如 信号带宽、脉宽、温度等)也会影响成像的质量和效率。因此,自适应分辨率调控机制会根据这 些实时参数,智能地分配计算资源,调整压缩感知的采样率和迭代次数,以平衡成像速度和分辨 率。 设采样率为 α,它决定了在采样过程中获取的样本数量与原始信号完整样本数量的比例关系, 直接影响采样数据量和后续处理的复杂度,以及重构信号的精度。迭代次数为 T,在算法运行过程 中,多次迭代有助于逐步逼近最优解,提高信号重构或参数调整的准确性,但同时也会增加计算时 间和资源消耗。硬件状态参数(如温度 Tm、信号带宽 B、脉宽 τ 等)组成向量 p = [Tm, B, τ, · · · ], 这些硬件状态参数反映了系统在运行时的实际工作条件,不同的硬件状态会对信号处理和成像质 量产生影响。建立决策函数 f(p) 来确定当前的采样率和迭代次数: 3α = g1(p) T = g2(p) 这两个函数根据硬件状态参数向量 p 动态调整采样率和迭代次数,以适应不同的硬件工作环 境,实现资源的合理利用和成像质量的优化。以均方误差(MSE)来衡量成像质量,MSE 的表达 式为: MSE = 1 N ∑N i=1 (xi − xˆi) 2 其中,xi 是原始信号的第 i 个样本值,xˆi 是重构信号的第 i 个样本值,N 是样本总数。MSE 度量了原始信号与重构信号之间的平均误差平方,其值越小,表明重构信号与原始信号越接近,成 像质量越高。在调整采样率和迭代次数时,目标是在满足一定硬件资源约束下,最小化关键区域 的 MSE,即在有限的硬件资源条件下,通过优化采样率和迭代次数,使关键区域的成像质量达到 最佳。 这样设计的原因:在实际的 SAR 成像系统中,硬件的工作状态是动态变化的,例如温度的 变化可能影响硬件的性能,信号带宽和脉宽的改变会影响信号的特性。如果采用固定的采样率和 迭代次数,无法充分适应硬件状态的变化,可能导致成像质量下降或者资源浪费。通过建立基于 硬件状态参数的决策函数,能够根据实际情况动态调整采样率和迭代次数,在保证成像质量的前 提下,最大限度地提高资源利用率,降低系统能耗。同时,使用 MSE 作为成像质量的衡量指标, 能够直观地反映重构信号与原始信号的差异,便于进行量化分析和优化。实现步骤如下。 1. 参数监测:通过协议获取硬件状态参数,从协议字段中读取温度值 Tm、信号带宽 B 等。这 些协议定义了硬件与软件之间的数据交互方式和格式,通过解析协议字段,能够实时获取硬 件的状态信息,为后续的决策和参数调整提供数据依据。 2. 决策模型:建立决策模型,使用决策模型 f(p) 来输出采样率 α 和迭代次数 T。决策模型 具有强大的非线性映射能力,能够学习硬件状态参数与最优采样率和迭代次数之间的复杂关 系,从而根据实时监测到的硬件状态,准确地决策出合适的采样率和迭代次数。 3. 参数调整:根据决策结果,更新压缩感知算法中的采样率和迭代次数参数。将决策模型输出 的采样率和迭代次数应用到压缩感知算法中,实现对算法的动态优化,使其适应不断变化的 硬件环境,提高成像效率和质量。 这样设计的原因:采用协议获取硬件状态参数,是因为在实际的系统中,硬件与软件之间需 要遵循一定的通信规范,通过协议可以确保数据的准确传输和解析。神经网络模型由于其强大的 学习能力,能够处理复杂的非线性关系,对于硬件状态参数与最优采样率和迭代次数之间的复杂 映射关系,能够通过训练学习到准确的模型,从而实现精准的决策。实时调整压缩感知算法的参 数,能够使算法始终处于最优或接近最优的运行状态,适应硬件环境的动态变化,提高成像的效 率和质量,满足实际应用中对 SAR 成像的高性能要求。 依据状态信息调整参数:原算法根据协议中“状态信息查询”反馈的实时参数调整压缩感知 的采样率和迭代次数。在文档协议中,状态信息包含信号带宽、信号脉宽、中心频率、射频模块 温度、FPGA 芯片温度等多参数。算法应根据这些参数的变化更精准地调整成像参数。比如,当 射频模块温度升高(超过一定阈值,如文档中某温度范围),为避免硬件性能下降对成像质量的影 响,不仅降低非关键区域的采样率,还可适当降低整体的采样率,同时增加关键区域的迭代次数, 优先保障关键区域的高分辨率成像。 考虑数据完整性与分辨率平衡:文档提到帧计数信息可用于核验数据完整性。在自适应分辨 率调控过程中,将数据完整性纳入考虑因素。若检测到数据丢帧(通过帧计数判断),在调整分辨 4率时,优先保证数据完整部分的成像分辨率,对于可能丢失数据的区域,采取保守的分辨率调整 策略,避免因分辨率调整过度导致成像错误或信息丢失。 2.3 基于协议端口的高效数据流协同理论与实现 原始 SAR 算法采用传统同步数据处理方式,基于协议端口的高效数据流协同是对其数据处 理流程的革新。原始 SAR 算法数据接收、参数调整和数据处理顺序进行,等待延迟长、成像时间 久、效率低。基于协议端口的高效数据流协同利用协议命令端口与数据端口分离特性,设计异步 流水线处理架构,使数据接收和参数调整可同时进行,减少等待时间,降低整体成像时间,提高 成像效率。 设数据接收时间为 tr,它表示从外部设备接收数据所花费的时间,受到数据传输速率、数据 量以及传输链路状况等因素的影响。参数调整时间为 ta,是指根据硬件状态或其他条件对算法参 数进行调整所需要的时间,与参数调整的复杂程度和计算资源有关。总成像时间为 Ttotal,它是衡 量整个成像过程效率的关键指标。在异步流水线架构下,Ttotal = max(tr,ta) + tp 其中 tp 是数据处理时间,即对接收的数据进行处理(如信号重构、图像生成等)所需要的时 间。在异步流水线架构中,数据接收、参数调整和数据处理这三个阶段可以并行进行,总成像时 间取决于数据接收时间和参数调整时间中的较大值再加上数据处理时间,这种架构能够充分利用 硬件资源,提高成像效率。而在传统同步处理方式下,T sync total = tr + ta + tp 在传统同步处理方式中,数据接收、参数调整和数据处理这三个阶段依次顺序执行,总成像 时间是这三个阶段时间的总和,相较于异步流水线架构,同步处理方式在时间利用上不够高效,容 易造成资源闲置。 这样设计的原因:在 SAR 成像过程中,数据接收、参数调整和数据处理是连续的环节。传统 的同步处理方式,各环节依次进行,会导致在某些环节等待的时间里,硬件资源处于闲置状态,尤 其是当不同环节的处理时间差异较大时,整体效率低下。而异步流水线架构允许这三个环节并行 执行,充分利用硬件的多任务处理能力,减少空闲时间,提高系统的整体吞吐量和成像效率。通 过这种架构设计,能够在有限的硬件资源下,加快成像速度,满足对实时性要求较高的应用场景。 这样设计的原因:明确硬件连接和协议端口,是确保硬件设备之间能够正确通信和协同工作 的基础。在软件编程中,实现异步流水线架构和传统同步处理架构的执行逻辑,能够将理论上的 架构设计转化为实际可运行的程序。通过不同的编程逻辑实现,可以对比两种架构在实际运行中 的性能差异,为进一步优化系统提供依据,同时也便于根据具体的应用需求和硬件条件选择合适 的架构。 算法利用协议中命令端口(4015)与数据端口(4016)分离的特性设计异步流水线处理架构。 根据文档协议内容,在接收数据帧(端口 4016)时,对于不同类型的命令(如设备自检、采集数 据、停止采集等),进一步细化处理逻辑。例如,在接收到“采集数据”命令后,除了实时调整成 像参数,还可根据命令中的参数(如采集时长、采集频率等,若协议后续扩展相关参数),提前规 划数据接收和处理流程,减少等待延迟。 结合数据文件格式优化存储, 文档定义了数据文件格式,在通过数据端口(4016)读取数据 时,根据数据帧中的 Magic、帧长度和帧计数信息,优化数据存储方式。在存储数据时,按照帧 计数顺序存储,利用帧长度信息准确记录每帧数据的存储位置和长度,便于后续数据读取和处理, 提高数据存储和读取的效率,进一步提升整体成像时间性能。 本节中关于图 1 , 图 2 , 图 3,图 5 ,图 4 。 在这个架构图中,各模块的功能如下: 5• 上位机:作为整个系统的控制端,负责发起各种操作指令,如设备自检、采集数据等命令。 • TCP/IP 通信模块:利用 TCP/IP 协议,通过命令端口 4015 和数据端口 4016 与下位机进 行通信,实现命令的发送和数据的接收。 • 命令解析与处理模块: – 对上位机发送的命令进行解析。 – 根据不同的命令类型(如设备自检、采集数据、雷达参数设置等),触发相应的操作。 – 将相关参数传递给后续模块。 • 数据接收与预处理模块: – 从数据端口 4016 接收下位机上传的数据。 – 按照数据文件格式,解析帧起始标记 Magic、获取帧长度、读取帧计数并提取采集数据, 为后续的处理做准备。 • 分块压缩感知模块:将预处理后的数据按帧分块,利用压缩感知理论对每块数据进行稀疏采 样和重构,减少数据处理量,提升成像速度。 • 自适应分辨率调控模块:根据从命令解析模块获取的雷达参数(如信号带宽、脉宽等)以及 数据接收模块的信息(数据完整性),动态调整压缩感知的采样率和迭代次数,平衡成像速 度和分辨率。 • 基于协议端口的数据流协同模块:利用命令端口和数据端口分离的特性,协调命令的发送、 数据的接收以及各模块之间的数据流动,减少等待延迟,实现高效的数据流协同。 • 成像结果融合模块:将分块压缩感知模块和自适应分辨率调控模块处理后的结果进行融合, 生成完整的成像数据。 • 成像结果输出模块:将最终的成像结果呈现给用户或进行后续的存储、分析等操作。 在这个类图中,SARImagingAlgorithm 代表整个创新算法,包含分块压缩感知、自适应分辨 率调控和数据流协同三个核心方法。CommunicationProtocol 类用于处理与数字模块的通信,包 括命令发送、数据接收和响应解析。DataProcessor 类负责处理接收到的数据帧,提取有效数据。 算法类与通信协议类、数据处理类存在使用关系,体现了算法对通信和数据处理功能的依赖。 序列图展示了上位机与下位机基于通信协议进行数据交互以及创新算法处理数据的过程。上 位机通过命令端口(4015)向下位机发送命令,下位机解析并执行相应操作后,通过相同端口回 复命令执行结果,再通过数据端口(4016)上传采集数据。上位机将采集数据传递给创新算法,算 法依次执行分块压缩感知、自适应分辨率调控和数据流协同处理,最后将处理后的成像数据返回 给上位机。 [1]H. Lu, H. Fan, H. Zhang, D. Liu and L. Zhao, ”A Modiffed Capon Method for SAR Tomography Over Forest,” in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 4007905, doi: 10.1109/LGRS.2020.3047196. [2]M. Smessaert, L. Villard, L. Polidori, S. Daniel and L. Ferro-Famil, ”Improvement Prospects of DTM Reconstruction from P-Band SAR Tomography Over Tropical Dense Forests,” 2021 IEEE 6Figure 1: 算法整体

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值