最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
💦💦这是一道填空题,但可以把它当做一道大题来做。题目的意思简单理解为 每个节点的距离是他们的最小公倍数,而节点与节点之间的编号之差不能大于21,最后求的是节点1到节点2021的最短距离。
💦💦 这里就涉及到了一个知识点——最小公倍数,为求最小公倍数,有个公式是 最小公倍数 = 两数乘积 / 最大公约数。而最大公约数可以使用辗转相除法求解。
💦💦 接着我们应该怎么做呢?这题可以用动态DP打表的方式得出答案。如果不清楚DP数组的朋友可以点击这里。提到DP我也说一下,最近几年蓝桥杯试题的难度增长趋势是非常明显的,因此动态DP应该是要成为我们的必备技能。(❗️❗️所以我强烈建议不了解DP数组的朋友把DP学会❗️❗️)
💦💦 如果你已经知道了如何使用动态规划的DP数组,那么这道题就变得容易起来,每个中间节点(假设是i)无非就两个动作:找到通往 i 节点的最近节点 和 确定 i 节点与下一节点的距离。
说完了中间部分的节点,现在就来说一下两边的节点,因为节点1是所有数的约数,那么它可以直接得出 2~22 的距离了,就是节点值本身。而最后一个数2021,它的动作就是判断在它的连接范围内哪个距离最短,哪个短就选哪个。
💦💦 我们先看一下二维DP的思路
试题D:路径 答案:10266837
最小公倍数LCM(least common multiple)的辗转相除法。
def lcm(a,b):
if a > b:
a,b = b,a
mul = a * b
不断用大的数除以小的数取余数部分直到最后能够整除为止。
while a > 0:
a,b = b % a, a
return mul// b
target = 2021
dp= [[float(“inf”)] * (target+1) for i in range(target+1)] # 创建列表的两种写法
初始化状态
for i in range(1,23): # 1能到的最远距离是22,因为22-1不大于21,所以这里右区间是23
dp[1][i] = i # 1 与 n 的最小公倍数必定是 n
for i in range(2,target+1): # 填表
从第i个数开始只填绝对值小于21的部分
for j in range(i,i+22):
当超出目标值2021时终止循环
if j > target:
break
当j等于i时,寻找上一个距离i最近的节点,第一个动作
if j == i:
寻找前面21范围以内的数,找出上一节点到i节点的最短路径
for k in range(1,22):
if i - k > 0:
取二者最小值
dp[i][j] = min(dp[i][j],dp[i-k][j])
else:
break
第二个动作就是确定i的上一节点到i的下一节点的距离
else:
dp[i][i]表示上一个节点到节点i的最短距离,然后上一节点又表示上上节点到该节点的距离,然后上上…
其实就是节点1到节点i的距离
lcm(i,j)表示i到下一节点的距离
dp[i][j]表示节点1到节点j的路径
dp[i][j] = lcm(i,j) + dp[i][i]
最后打印结果
print(dp[target][target])
💦💦对于二维DP而言,有些地方是可以优化的,可以一气呵成,将两个动作合并成一个动作,转换成一维DP。下面我们看一下代码实现。
试题D:路径 答案:10266837
最小公倍数LCM(least common multiple)的辗转相除法。
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!