先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
正文
3.kwargs参数的使用
示例代码:
import multiprocessing
import time
带有参数的任务
def task(count):
for i in range(count):
print(“任务执行中…”)
time.sleep(0.2)
else:
print(“任务执行完成”)
if name == ‘main’:
创建子进程
kwargs: 表示以字典方式传入参数
sub_process = multiprocessing.Process(target=task, kwargs={“count”: 3})
sub_process.start()
4.小结
1.进程的注意点介绍
2.进程之间不共享全局变量
import multiprocessing
import time
定义全局变量
g_list = list()
添加数据的任务
def add_data():
for i in range(5):
g_list.append(i)
print(“add:”, i)
time.sleep(0.2)
代码执行到此,说明数据添加完成
print(“add_data:”, g_list)
def read_data():
print(“read_data”, g_list)
if name == ‘main’:
创建添加数据的子进程
add_data_process = multiprocessing.Process(target=add_data)
创建读取数据的子进程
read_data_process = multiprocessing.Process(target=read_data)
启动子进程执行对应的任务
add_data_process.start()
主进程等待添加数据的子进程执行完成以后程序再继续往下执行,读取数据
add_data_process.join()
read_data_process.start()
print(“main:”, g_list)
总结: 多进程之间不共享全局变量
3.进程之间不共享全局变量的小结
4.主进程会等待所有的子进程执行结束再结束
import multiprocessing
import time
定义进程所需要执行的任务
def task():
for i in range(10):
print(“任务执行中…”)
time.sleep(0.2)
if name == ‘main’:
创建子进程
sub_process = multiprocessing.Process(target=task)
sub_process.start()
主进程延时0.5秒钟
time.sleep(0.5)
print(“over”)
exit()
总结: 主进程会等待所有的子进程执行完成以后程序再退出
保证主进程正常退出的示例代码:
import multiprocessing
import time
定义进程所需要执行的任务
def task():
for i in range(10):
print(“任务执行中…”)
time.sleep(0.2)
if name == ‘main’:
创建子进程
sub_process = multiprocessing.Process(target=task)
设置守护主进程,主进程退出子进程直接销毁,子进程的生命周期依赖与主进程
sub_process.daemon = True
sub_process.start()
time.sleep(0.5)
print(“over”)
让子进程销毁
sub_process.terminate()
exit()
总结: 主进程会等待所有的子进程执行完成以后程序再退出
如果想要主进程退出子进程销毁,可以设置守护主进程或者在主进程退出之前让子进程销毁
5.主进程会等待所有的子进程执行结束再结束的小结
1.线程的介绍
在Python中,想要实现多任务除了使用进程,还可以使用线程来完成,线程是实现多任务的另外一种方式。
2.线程的概念
3.线程的作用
4.小结
1.导入线程模块
2.线程类Thread参数说明
3.启动线程
启动线程使用start方法
4.多线程完成多任务的代码
import threading
import time
唱歌任务
def sing():
扩展: 获取当前线程
print(“sing当前执行的线程为:”, threading.current_thread())
for i in range(3):
print(“正在唱歌…%d” % i)
time.sleep(1)
跳舞任务
def dance():
扩展: 获取当前线程
print(“dance当前执行的线程为:”, threading.current_thread())
for i in range(3):
print(“正在跳舞…%d” % i)
time.sleep(1)
if name == ‘main’:
扩展: 获取当前线程
print(“当前执行的线程为:”, threading.current_thread())
创建唱歌的线程
target: 线程执行的函数名
sing_thread = threading.Thread(target=sing)
创建跳舞的线程
dance_thread = threading.Thread(target=dance)
开启线程
sing_thread.start()
dance_thread.start()
5.小结
1.线程执行带有参数的任务的介绍
2.args参数的使用
示例代码:
import threading
import time
带有参数的任务
def task(count):
for i in range(count):
print(“任务执行中…”)
time.sleep(0.2)
else:
print(“任务执行完成”)
if name == ‘main’:
创建子线程
args: 以元组的方式给任务传入参数
sub_thread = threading.Thread(target=task, args=(5,))
sub_thread.start()
3.kwargs参数的使用
示例代码:
import threading
import time
带有参数的任务
def task(count):
for i in range(count):
print(“任务执行中…”)
time.sleep(0.2)
else:
print(“任务执行完成”)
if name == ‘main’:
创建子线程
kwargs: 表示以字典方式传入参数
sub_thread = threading.Thread(target=task, kwargs={“count”: 3})
sub_thread.start()
4.小结
1.线程的注意点介绍
2.线程之间执行是无序的
import threading
import time
def task():
time.sleep(1)
print(“当前线程:”, threading.current_thread().name)
if name == ‘main’:
for _ in range(5):
sub_thread = threading.Thread(target=task)
sub_thread.start()
3.主线程会等待所有的子线程执行结束再结束
假如我们现在创建一个子线程,这个子线程执行完大概需要2.5秒钟,现在让主线程执行1秒钟就退出程序,查看一下执行结果,示例代码如下:
import threading
import time
测试主线程是否会等待子线程执行完成以后程序再退出
def show_info():
for i in range(5):
print(“test:”, i)
time.sleep(0.5)
if name == ‘main’:
sub_thread = threading.Thread(target=show_info)
sub_thread.start()
主线程延时1秒
time.sleep(1)
print(“over”)
设置守护主线程的示例代码:
import threading
import time
测试主线程是否会等待子线程执行完成以后程序再退出
def show_info():
for i in range(5):
print(“test:”, i)
time.sleep(0.5)
if name == ‘main’:
创建子线程守护主线程
daemon=True 守护主线程
守护主线程方式1
sub_thread = threading.Thread(target=show_info, daemon=True)
设置成为守护主线程,主线程退出后子线程直接销毁不再执行子线程的代码
守护主线程方式2
sub_thread.setDaemon(True)
sub_thread.start()
主线程延时1秒
time.sleep(1)
print(“over”)
4.线程之间共享全局变量
import threading
import time
定义全局变量
my_list = list()
写入数据任务
def write_data():
for i in range(5):
my_list.append(i)
time.sleep(0.1)
print(“write_data:”, my_list)
读取数据任务
def read_data():
print(“read_data:”, my_list)
if name == ‘main’:
创建写入数据的线程
write_thread = threading.Thread(target=write_data)
创建读取数据的线程
read_thread = threading.Thread(target=read_data)
write_thread.start()
延时
time.sleep(1)
主线程等待写入线程执行完成以后代码在继续往下执行
write_thread.join()
print(“开始读取数据啦”)
read_thread.start()
5.线程之间共享全局变量数据出现错误问题
import threading
定义全局变量
g_num = 0
循环一次给全局变量加1
def sum_num1():
for i in range(1000000):
global g_num
g_num += 1
print(“sum1:”, g_num)
循环一次给全局变量加1
def sum_num2():
for i in range(1000000):
global g_num
g_num += 1
print(“sum2:”, g_num)
if name == ‘main’:
创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
启动线程
first_thread.start()
启动线程
second_thread.start()
线程等待的示例代码:
import threading
定义全局变量
g_num = 0
循环1000000次每次给全局变量加1
def sum_num1():
for i in range(1000000):
global g_num
g_num += 1
print(“sum1:”, g_num)
循环1000000次每次给全局变量加1
def sum_num2():
for i in range(1000000):
global g_num
g_num += 1
print(“sum2:”, g_num)
if name == ‘main’:
创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
启动线程
first_thread.start()
主线程等待第一个线程执行完成以后代码再继续执行,让其执行第二个线程
线程同步: 一个任务执行完成以后另外一个任务才能执行,同一个时刻只有一个任务在执行
first_thread.join()
启动线程
second_thread.start()
6.小结
1.互斥锁的概念
2.互斥锁的使用
3.使用互斥锁完成2个线程对同一个全局变量各加100万次的操作
import threading
定义全局变量
g_num = 0
创建全局互斥锁
lock = threading.Lock()
循环一次给全局变量加1
def sum_num1():
上锁
lock.acquire()
for i in range(1000000):
global g_num
g_num += 1
print(“sum1:”, g_num)
释放锁
lock.release()
循环一次给全局变量加1
def sum_num2():
上锁
lock.acquire()
for i in range(1000000):
global g_num
g_num += 1
print(“sum2:”, g_num)
释放锁
lock.release()
if name == ‘main’:
创建两个线程
first_thread = threading.Thread(target=sum_num1)
second_thread = threading.Thread(target=sum_num2)
启动线程
first_thread.start()
second_thread.start()
提示:加上互斥锁,那个线程抢到这个锁我们决定不了,那线程抢到锁那个线程先执行,没有抢到的线程需要等待
加上互斥锁多任务瞬间变成单任务,性能会下降,也就是说同一时刻只能有一个线程去执行
4.小结
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。
别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。
我先来介绍一下这些东西怎么用,文末抱走。
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
片描述](https://i-blog.csdnimg.cn/blog_migrate/9ed2fba5b7e79dfaf9cafa2455c2e4bc.png)
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
(4)200多本电子书
这些年我也收藏了很多电子书,大概200多本,有时候带实体书不方便的话,我就会去打开电子书看看,书籍可不一定比视频教程差,尤其是权威的技术书籍。
基本上主流的和经典的都有,这里我就不放图了,版权问题,个人看看是没有问题的。
(5)Python知识点汇总
知识点汇总有点像学习路线,但与学习路线不同的点就在于,知识点汇总更为细致,里面包含了对具体知识点的简单说明,而我们的学习路线则更为抽象和简单,只是为了方便大家只是某个领域你应该学习哪些技术栈。
(6)其他资料
还有其他的一些东西,比如说我自己出的Python入门图文类教程,没有电脑的时候用手机也可以学习知识,学会了理论之后再去敲代码实践验证,还有Python中文版的库资料、MySQL和HTML标签大全等等,这些都是可以送给粉丝们的东西。
这些都不是什么非常值钱的东西,但对于没有资源或者资源不是很好的学习者来说确实很不错,你要是用得到的话都可以直接抱走,关注过我的人都知道,这些都是可以拿到的。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-nRqknX4y-1713349332441)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!