一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
据知,Python的GIL(全局解释器锁)是多线程应用程序的性能瓶颈。因此,建议使用Python的多处理库来运行CPU密集型的条形码和二维码检测算法。示例代码视频_线程. py演示如何使用Python的多处理库。
以下是构建我们的条形码和QR码扫描仪的步骤:
- 导入必要的包:
import numpy as np
import cv2 as cv
from multiprocessing.pool import ThreadPool
from collections import deque
import dbr
from dbr import *
- 设置许可证密钥以激活和实例化Dynamsoft条形码读取器:
threadn = 1 # cv.getNumberOfCPUs()
pool = ThreadPool(processes = threadn)
barcodeTasks = deque()
- 使用您想要使用的进程数量创建一个线程池:
threadn = 1 # cv.getNumberOfCPUs()
pool = ThreadPool(processes = threadn)
barcodeTasks = deque()
注意:如果您使用所有CPU核心,CPU使用率将会很高。
- 创建一个任务功能,从网络摄像头视频帧中检测条形码和QR码:
def process_frame(frame):
results = None
try:
results = reader.decode_buffer(frame)
except BarcodeReaderError as bre:
print(bre)
return results
while True:
ret, frame = cap.read()
while len(barcodeTasks) > 0 and barcodeTasks[0].ready():
results = barcodeTasks.popleft().get()
if results != None:
for result in results:
points = result.localization_result.localization_points
cv.line(frame, points[0], points[1], (0,255,0), 2)
cv.line(frame, points[1], points[2], (0,255,0), 2)
cv.line(frame, points[2], points[3], (0,255,0), 2)
cv.line(frame, points[3], points[0], (0,255,0), 2)
cv.putText(frame, result.barcode_text, points[0], cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255))
if len(barcodeTasks) < threadn:
task = pool.apply_async(process_frame, (frame.copy(), ))
barcodeTasks.append(task)
cv.imshow(‘Barcode & QR Code Scanner’, frame)
ch = cv.waitKey(1)
if ch == 27:
break
- 运行条形码和QR码扫描仪:
Dynamsoft条形码阅读器可以从一幅图像中检测多个条形码和QR码。然而,图像质量影响检测精度。正如你在上面的图像中看到的,为了捕捉所有的条形码和二维码,我们需要增加镜头的景深。这样,条形码和二维码可能会变得太小而无法读取。为了解决这一问题,我们将摄像头拉近以获得高质量的扫描图像,然后使用OpenCV拼接API将多个条形码和二维码图像拼接成一幅全景图。
将多个条形码和QR码图像拼接成全景图
OpenCV存储库包含一个stitching.py展示如何使用OpenCV缝合器API的文件。
要实现全景拼接:
- 初始化stitcher对象:
modes = (cv.Stitcher_PANORAMA, cv.Stitcher_SCANS)
stitcher = cv.Stitcher.create(modes[1])
stitcher.setPanoConfidenceThresh(0.5)
- 为拼接包含条形码和QR码的图像创建新的任务功能:
panoramaPool = ThreadPool(processes = threadn)
panoramaTask = deque()
def stitch_frame(self, frame):
try:
results = self.reader.decode_buffer(frame)
if results != None:
for result in results:
points = result.localization_result.localization_points
cv.line(frame, points[0], points[1], (0,255,0), 2)
cv.line(frame, points[1], points[2], (0,255,0), 2)
cv.line(frame, points[2], points[3], (0,255,0), 2)
cv.line(frame, points[3], points[0], (0,255,0), 2)
cv.putText(frame, result.barcode_text, points[0], cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255))
self.panorama.append((frame, len(results)))
print(‘Stitching …’)
try:
all_images = [frame for frame, count in self.panorama]
status, image = self.stitcher.stitch(all_images)
if status != cv.Stitcher_OK:
print(“Can’t stitch images, error code = %d” % status)
return self.panorama[0][0]
else:
Stop stitching if the output image is out of control
if image.shape[0] >= frame.shape[0] * 1.5:
self.isPanoramaDone = True
self.save_frame(all_images[0])
print(‘Stitching is done…’)
return None
Drop the stitched image if its quality is not good enough
total = 0
for frame, count in self.panorama:
total += count
count_stitch = self.count_barcodes(image)
if count_stitch > total or count_stitch < self.panorama[0][1]:
return self.panorama[0][0]
(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!