Opencv最强案例——使用摄像头、OpenCV和Python扫描条形码和二维码。(3)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

据知,Python的GIL(全局解释器锁)是多线程应用程序的性能瓶颈。因此,建议使用Python的多处理库来运行CPU密集型的条形码和二维码检测算法。示例代码视频_线程. py演示如何使用Python的多处理库。

以下是构建我们的条形码和QR码扫描仪的步骤:

  1. 导入必要的包:

import numpy as np

import cv2 as cv

from multiprocessing.pool import ThreadPool

from collections import deque

import dbr

from dbr import *

  1. 设置许可证密钥以激活和实例化Dynamsoft条形码读取器:

threadn = 1 # cv.getNumberOfCPUs()

pool = ThreadPool(processes = threadn)

barcodeTasks = deque()

  1. 使用您想要使用的进程数量创建一个线程池:

threadn = 1 # cv.getNumberOfCPUs()

pool = ThreadPool(processes = threadn)

barcodeTasks = deque()

注意:如果您使用所有CPU核心,CPU使用率将会很高。

  1. 创建一个任务功能,从网络摄像头视频帧中检测条形码和QR码:

def process_frame(frame):

results = None

try:

results = reader.decode_buffer(frame)

except BarcodeReaderError as bre:

print(bre)

return results

while True:

ret, frame = cap.read()

while len(barcodeTasks) > 0 and barcodeTasks[0].ready():

results = barcodeTasks.popleft().get()

if results != None:

for result in results:

points = result.localization_result.localization_points

cv.line(frame, points[0], points[1], (0,255,0), 2)

cv.line(frame, points[1], points[2], (0,255,0), 2)

cv.line(frame, points[2], points[3], (0,255,0), 2)

cv.line(frame, points[3], points[0], (0,255,0), 2)

cv.putText(frame, result.barcode_text, points[0], cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255))

if len(barcodeTasks) < threadn:

task = pool.apply_async(process_frame, (frame.copy(), ))

barcodeTasks.append(task)

cv.imshow(‘Barcode & QR Code Scanner’, frame)

ch = cv.waitKey(1)

if ch == 27:

break

  1. 运行条形码和QR码扫描仪:

Dynamsoft条形码阅读器可以从一幅图像中检测多个条形码和QR码。然而,图像质量影响检测精度。正如你在上面的图像中看到的,为了捕捉所有的条形码和二维码,我们需要增加镜头的景深。这样,条形码和二维码可能会变得太小而无法读取。为了解决这一问题,我们将摄像头拉近以获得高质量的扫描图像,然后使用OpenCV拼接API将多个条形码和二维码图像拼接成一幅全景图。

将多个条形码和QR码图像拼接成全景图

OpenCV存储库包含一个stitching.py展示如何使用OpenCV缝合器API的文件。

要实现全景拼接:

  1. 初始化stitcher对象:

modes = (cv.Stitcher_PANORAMA, cv.Stitcher_SCANS)

stitcher = cv.Stitcher.create(modes[1])

stitcher.setPanoConfidenceThresh(0.5)

  1. 为拼接包含条形码和QR码的图像创建新的任务功能:

panoramaPool = ThreadPool(processes = threadn)

panoramaTask = deque()

def stitch_frame(self, frame):

try:

results = self.reader.decode_buffer(frame)

if results != None:

for result in results:

points = result.localization_result.localization_points

cv.line(frame, points[0], points[1], (0,255,0), 2)

cv.line(frame, points[1], points[2], (0,255,0), 2)

cv.line(frame, points[2], points[3], (0,255,0), 2)

cv.line(frame, points[3], points[0], (0,255,0), 2)

cv.putText(frame, result.barcode_text, points[0], cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255))

self.panorama.append((frame, len(results)))

print(‘Stitching …’)

try:

all_images = [frame for frame, count in self.panorama]

status, image = self.stitcher.stitch(all_images)

if status != cv.Stitcher_OK:

print(“Can’t stitch images, error code = %d” % status)

return self.panorama[0][0]

else:

Stop stitching if the output image is out of control

if image.shape[0] >= frame.shape[0] * 1.5:

self.isPanoramaDone = True

self.save_frame(all_images[0])

print(‘Stitching is done…’)

return None

Drop the stitched image if its quality is not good enough

total = 0

for frame, count in self.panorama:

total += count

count_stitch = self.count_barcodes(image)

if count_stitch > total or count_stitch < self.panorama[0][1]:

return self.panorama[0][0]

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

OpenCV+zbar开源库实现摄像头识别二维码,测试验证识别率非常高,已实现简单的应用。 打包源码在VS2013下可以完全编译成功,附加包含OpenCV库及zbar-0.10-setup.exe,zbar-0.10.tar.bz2 下载Demo后需要安装 zbar-0.10-setup.exe 以下代码可以可以完成整个流程的开发,也可以贡献积分下载资源包。 1、 环境准备 (1) OpenCV库2.49 (2) ZBar开源库 (3) VS2013 2、 VS2013环境配置 (1) 配置附加包含目录 C/C++ -- 附加包含目录 include\opencv\include\ include\opencv\include\opencv include\opencv\include\opencv2 include (2) 配置链接器 链接器 -- 附加库目录 lib32\opencv\lib lib32 (3) 配置链接器 链接器--输入--附加依赖项 opencv_core249d.lib opencv_highgui249d.lib opencv_imgproc249d.lib libzbar-0.lib 3、 代码开发 (1)包含头文件 include include include include include include using namespace std; using namespace zbar; using namespace cv; (2)实现函数 void MatToCImage(cv::Mat &mat, CImage &cImage) { //create new CImage int width = mat.cols; int height = mat.rows; int channels = mat.channels(); cImage.Destroy(); //clear cImage.Create(width, height, 8 * channels); //默认图像像素单通道占用1个字节 //copy values uchar* ps; uchar* pimg = (uchar*)cImage.GetBits(); //A pointer to the bitmap buffer int step = cImage.GetPitch(); for (int i = 0; i (i)); for (int j = 0; j GetDlgItem(IDC_STATIC_IMG)->GetClientRect(▭); cv::VideoCapture capture(0);//从摄像头读入图像 while (!m_bCloseCamera) { cv::Mat frame; capture >> frame; cv::Mat newframe; cv::Size ResImgSiz = cv::Size(rect.Width(), rect.Height()); cv::resize(frame, newframe, ResImgSiz, CV_INTER_CUBIC); MatToCImage(newframe, imgDst); imgDst.Draw(pThis->GetDlgItem(IDC_STATIC_IMG)->GetDC()->GetSafeHdc(), rect); ImageScanner scanner; scanner.set_config(ZBAR_NONE, ZBAR_CFG_ENABLE, 1); Mat imageGray; cvtColor(frame, imageGray, CV_RGB2GRAY); int width = imageGray.cols; int height = imageGray.rows; uchar *raw = (uchar *)imageGray.data; Image imageZbar(width, height, "Y800", raw, width * height); scanner.scan(imageZbar); //扫描条码 Image::SymbolIterator symbol = imageZbar.symbol_begin(); if (imageZbar.symbol_begin() == imageZbar.symbol_end()) { } else { iIndex++; if (iIndex > 999999) { iIndex = 0; } for (; symbol != imageZbar.symbol_end(); ++symbol) { char szInfo[1024]; memset(szInfo, 0, sizeof(szInfo)); sprintf(szInfo, "[d]类型:%s\r\n条码:%s\r\n", iIndex , symbol->get_type_name().c_str(), symbol->get_data().c_str()); pThis->GetDlgItem(IDC_EDIT1)->SetWindowText(szInfo); } } imageZbar.set_data(NULL, 0); } imgDst.Destroy(); capture.release(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值