python数据可视化神器,我就服它,2024年最新Python毕业设计源码包

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Python知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024c (备注Python)
img

正文

Pyecharts支持30+种可视化图表


得益于Echarts 项目,目前Pyecharts支持 30+ 种常见图表,如下所示:

  • Bar(柱状图/条形图)

  • Bar3D(3D 柱状图)

  • Boxplot(箱形图)

  • EffectScatter(散点图)

  • Funnel(漏斗图)

  • Gauge(仪表盘)

  • Geo(地理坐标系)

  • Graph(关系图)

  • HeatMap(热力图)

  • Kline(K线图)

  • Line(折线/面积图)

  • Line3D(3D 折线图)

  • Liquid(水球图)

  • Map(地图)

  • Parallel(平行坐标系)

  • Pie(饼图)

  • Polar(极坐标系)

  • Radar(雷达图)

  • Sankey(桑基图)

  • Scatter(散点图)

  • Scatter3D(3D 散点图)

  • ThemeRiver(主题河流图)

  • WordCloud(词云图)

在这里插入图片描述

Pyecharts安装


1、pip 安装

安装 v1 以上版本

$ pip install pyecharts -U

如果需要安装 0.5.11 版本的开发者,可以使用

pip install pyecharts==0.5.11

2、源码安装

v1 以上版本

$ git clone https://github.com/pyecharts/pyecharts.git

如果需要安装 0.5.11 版本,请使用 git clone https://github.com/pyecharts/pyecharts.git -b v05x

$ cd pyecharts

$ pip install -r requirements.txt

$ python setup.py install

在使用pip安装库时,由于墙的原因,下载时可能会出现断线和速度过慢的问题导致下载失败,所以建议通过豆瓣源或清华镜像来进行下载:

豆瓣源下载

pip install -i https://pypi.douban.com/simple pyecharts

清华镜像源

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

PS: 这里要专门说明一下,自从 0.3.2 开始,为了缩减项目本身的体积以及维持 pyecharts 项目的轻量化运行,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表(Geo、Map),可自行安装对应的地图文件包。

通过pip命令进行安装

pip install echarts-countries-pypkg

pip install echarts-china-provinces-pypkg

pip install echarts-china-cities-pypkg

Pyecharts官方示例实战


现在我们来开始正式使用pycharts,这里我们先直接使用官方的数据,感受一下可视化展示效果。

from pyecharts.charts import Bar

from pyecharts import options as opts

V1 版本开始支持链式调用

bar = (

Bar()

.add_xaxis([“衬衫”, “毛衣”, “领带”, “裤子”, “风衣”, “高跟鞋”, “袜子”])

.add_yaxis(“商家A”, [114, 55, 27, 101, 125, 27, 105])

.add_yaxis(“商家B”, [57, 134, 137, 129, 145, 60, 49])

.set_global_opts(title_opts=opts.TitleOpts(title=“某商场销售情况”))

)

bar.render_notebook()

在这里顺便安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上可以直接调用实例(例如上方直接调用bar.render_notebook())就可以将图表直接展示出来,非常方便。

在这里插入图片描述

如果脚本在非jupyter环境运行,图表渲染方法需改为:

bar.render()

默认情况下,pycharts生成图表为HTML格式,也支持生成png图片格式,如下:

from snapshot_selenium import snapshot as driver

from pyecharts import options as opts

from pyecharts.charts import Bar

from pyecharts.render import make_snapshot

def bar_chart() -> Bar:

c = (

Bar()

.add_xaxis([“衬衫”, “毛衣”, “领带”, “裤子”, “风衣”, “高跟鞋”, “袜子”])

.add_yaxis(“商家A”, [114, 55, 27, 101, 125, 27, 105])

.add_yaxis(“商家B”, [57, 134, 137, 129, 145, 60, 49])

.reversal_axis()

.set_series_opts(label_opts=opts.LabelOpts(position=“right”))

.set_global_opts(title_opts=opts.TitleOpts(title=“Bar-测试渲染图片”))

)

return c

需要安装 snapshot-selenium 或者 snapshot-phantomjs

make_snapshot(driver, bar_chart().render(), “bar.png”)

在这里插入图片描述

Pyecharts几种高频使用的可视化图表


在上面官方示例中的柱状图表我们已经能感受到pycharts可视化功能的强大,最后再介始几种日常工作中常用的可视化图表及对应示例。

pie饼状图

from pyecharts import options as opts

from pyecharts.charts import Pie

from pyecharts.faker import Faker

pie = (

Pie()

.add(“”, [list(z) for z in zip(Faker.choose(), Faker.values())])

.set_colors([“blue”, “green”, “yellow”, “red”, “pink”, “orange”, “purple”])

.set_global_opts(title_opts=opts.TitleOpts(title=“Pie-设置颜色”))

.set_series_opts(label_opts=opts.LabelOpts(formatter=“{b}: {c}”))

)

pie.render_notebook()

在这里插入图片描述

仪表盘

from pyecharts import options as opts

from pyecharts.charts import Gauge

g = (

Gauge()

.add(“”, [(“完成率”, 66.6)])

.set_global_opts(title_opts=opts.TitleOpts(title=“Gauge-基本示例”))

)

g.render_notebook()

在这里插入图片描述

折线图

import pyecharts.options as opts

from pyecharts.charts import Line

from pyecharts.faker import Faker

c = (

Line()

.add_xaxis(Faker.choose())

.add_yaxis(“商家A”, Faker.values(), is_smooth=True)

.add_yaxis(“商家B”, Faker.values(), is_smooth=True)

.set_global_opts(title_opts=opts.TitleOpts(title=“Line-smooth”))

)

c.render_notebook()

在这里插入图片描述

K线图

from pyecharts import options as opts

from pyecharts.charts import Kline

data = [

[2320.26, 2320.26, 2287.3, 2362.94],

[2300, 2291.3, 2288.26, 2308.38],

[2295.35, 2346.5, 2295.35, 2345.92],

[2347.22, 2358.98, 2337.35, 2363.8],

[2360.75, 2382.48, 2347.89, 2383.76],

[2383.43, 2385.42, 2371.23, 2391.82],

[2377.41, 2419.02, 2369.57, 2421.15],

[2425.92, 2428.15, 2417.58, 2440.38],

[2411, 2433.13, 2403.3, 2437.42],

[2432.68, 2334.48, 2427.7, 2441.73],

[2430.69, 2418.53, 2394.22, 2433.89],

[2416.62, 2432.4, 2414.4, 2443.03],

[2441.91, 2421.56, 2418.43, 2444.8],

[2420.26, 2382.91, 2373.53, 2427.07],

[2383.49, 2397.18, 2370.61, 2397.94],

[2378.82, 2325.95, 2309.17, 2378.82],

[2322.94, 2314.16, 2308.76, 2330.88],

[2320.62, 2325.82, 2315.01, 2338.78],

[2313.74, 2293.34, 2289.89, 2340.71],

[2297.77, 2313.22, 2292.03, 2324.63],

[2322.32, 2365.59, 2308.92, 2366.16],

[2364.54, 2359.51, 2330.86, 2369.65],

[2332.08, 2273.4, 2259.25, 2333.54],

[2274.81, 2326.31, 2270.1, 2328.14],

[2333.61, 2347.18, 2321.6, 2351.44],

[2340.44, 2324.29, 2304.27, 2352.02],

[2326.42, 2318.61, 2314.59, 2333.67],

[2314.68, 2310.59, 2296.58, 2320.96],

[2309.16, 2286.6, 2264.83, 2333.29],

[2282.17, 2263.97, 2253.25, 2286.33],

[2255.77, 2270.28, 2253.31, 2276.22],

]

k = (

Kline()

.add_xaxis([“2017/7/{}”.format(i + 1) for i in range(31)])

.add_yaxis(“k线图”, data)

.set_global_opts(

yaxis_opts=opts.AxisOpts(is_scale=True),

xaxis_opts=opts.AxisOpts(is_scale=True),

title_opts=opts.TitleOpts(title=“K线图-基本示例”),

)

)

k.render_notebook()

在这里插入图片描述

地图Map

from pyecharts import options as opts

from pyecharts.charts import Map

from pyecharts.faker import Faker

map = (

Map()

.add(“中国地图”, [list(z) for z in zip(Faker.provinces, Faker.values())], “china”)

.set_global_opts(title_opts=opts.TitleOpts(title=“Map-基本示例”))

)

map.render_notebook()

在这里插入图片描述

词云图

import pyecharts.options as opts

在这里插入图片描述

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
age/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3poaWd1aWd1,size_16,color_FFFFFF,t_70)

感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注python)
[外链图片转存中…(img-DATfpHrc-1713363514254)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值