一起用Python做个车牌自动识别系统,好玩又实用!_python车牌模型(1)

font = QtGui.QFont()
font.setPointSize(11)
self.label_2.setFont(font)
self.label_2.setObjectName("label\_2")
self.label_3 = QtWidgets.QLabel(self.scrollAreaWidgetContents_3)
self.label_3.setGeometry(QtCore.QRect(10, 40, 321, 81))
self.label_3.setObjectName("label\_3")
self.scrollArea_3.setWidget(self.scrollAreaWidgetContents_3)
self.scrollArea_4 = QtWidgets.QScrollArea(self.centralwidget)
self.scrollArea_4.setGeometry(QtCore.QRect(1040, 510, 161, 131))
self.scrollArea_4.setWidgetResizable(True)
self.scrollArea_4.setObjectName("scrollArea\_4")
self.scrollAreaWidgetContents_4 = QtWidgets.QWidget()
self.scrollAreaWidgetContents_4.setGeometry(QtCore.QRect(0, 0, 159, 129))
self.scrollAreaWidgetContents_4.setObjectName("scrollAreaWidgetContents\_4")
self.pushButton_2 = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
self.pushButton_2.setGeometry(QtCore.QRect(20, 50, 121, 31))
self.pushButton_2.setObjectName("pushButton\_2")
self.pushButton = QtWidgets.QPushButton(self.scrollAreaWidgetContents_4)
self.pushButton.setGeometry(QtCore.QRect(20, 90, 121, 31))
self.pushButton.setObjectName("pushButton")
self.label_4 = QtWidgets.QLabel(self.scrollAreaWidgetContents_4)
self.label_4.setGeometry(QtCore.QRect(10, 10, 111, 20))
font = QtGui.QFont()
font.setPointSize(11)
self.label_4.setFont(font)
self.label_4.setObjectName("label\_4")
self.scrollArea_4.setWidget(self.scrollAreaWidgetContents_4)
MainWindow.setCentralWidget(self.centralwidget)
self.statusbar = QtWidgets.QStatusBar(MainWindow)
self.statusbar.setObjectName("statusbar")
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.pushButton.clicked.connect(self.__openimage)  # 设置点击事件
self.pushButton.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
self.pushButton_2.clicked.connect(self.__writeFiles)  # 设置点击事件
self.pushButton_2.setStyleSheet('''QPushButton{background:#222225;border-radius:5px;}QPushButton:hover{background:#2B2B2B;}''')
self.retranslateUi(MainWindow)
self.close_widget = QtWidgets.QWidget(self.centralwidget)
self.close_widget.setGeometry(QtCore.QRect(1130, 0, 90, 50))
self.close_widget.setObjectName("close\_widget")
self.close_layout = QGridLayout()  # 创建左侧部件的网格布局层
self.close_widget.setLayout(self.close_layout)  # 设置左侧部件布局为网格
self.left_close = QPushButton("")  # 关闭按钮
self.left_close.clicked.connect(self.close)
self.left_visit = QPushButton("")  # 空白按钮
self.left_visit.clicked.connect(MainWindow.big)
self.left_mini = QPushButton("")  # 最小化按钮
self.left_mini.clicked.connect(MainWindow.mini)
self.close_layout.addWidget(self.left_mini, 0, 0, 1, 1)
self.close_layout.addWidget(self.left_close, 0, 2, 1, 1)
self.close_layout.addWidget(self.left_visit, 0, 1, 1, 1)
self.left_close.setFixedSize(15, 15)  # 设置关闭按钮的大小
self.left_visit.setFixedSize(15, 15)  # 设置按钮大小
self.left_mini.setFixedSize(15, 15)  # 设置最小化按钮大小
self.left_close.setStyleSheet(
    '''QPushButton{background:#F76677;border-radius:5px;}QPushButton:hover{background:red;}''')
self.left_visit.setStyleSheet(
    '''QPushButton{background:#F7D674;border-radius:5px;}QPushButton:hover{background:yellow;}''')
self.left_mini.setStyleSheet(
    '''QPushButton{background:#6DDF6D;border-radius:5px;}QPushButton:hover{background:green;}''')

QtCore.QMetaObject.connectSlotsByName(MainWindow)
self.ProjectPath = os.getcwd()  # 获取当前工程文件位置
self.scrollAreaWidgetContents.setStyleSheet(sc)
self.scrollAreaWidgetContents_3.setStyleSheet(sc)
self.scrollAreaWidgetContents_4.setStyleSheet(sc)
b =             '''

color:white;
background:#2B2B2B;
‘’’
self.label_0.setStyleSheet(b)
self.label_1.setStyleSheet(b)
self.label_2.setStyleSheet(b)
self.label_3.setStyleSheet(b)
MainWindow.setWindowOpacity(0.95) # 设置窗口透明度
MainWindow.setAttribute(Qt.WA_TranslucentBackground)
MainWindow.setWindowFlag(Qt.FramelessWindowHint) # 隐藏边框

author:CSDN-Dragon少年

def retranslateUi(self, MainWindow):
_translate = QtCore.QCoreApplication.translate
MainWindow.setWindowTitle(_translate(“MainWindow”, “车牌识别系统”))
self.label_0.setText(_translate(“MainWindow”, “原始图片:”))
self.label.setText(_translate(“MainWindow”, “”))
self.label_1.setText(_translate(“MainWindow”, “识别结果:”))
self.label_2.setText(_translate(“MainWindow”, “车牌区域:”))
self.label_3.setText(_translate(“MainWindow”, “”))
self.pushButton.setText(_translate(“MainWindow”, “打开文件”))
self.pushButton_2.setText(_translate(“MainWindow”, “导出数据”))
self.label_4.setText(_translate(“MainWindow”, “事件:”))
self.scrollAreaWidgetContents_1.show()


UI实现效果如下:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/569378992ccf4d1990cf8e1001bf6f8d.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)


##### 2. 车牌识别


接下来我们需要实现两个核心功能,包括获取**车牌ROI区域**和**车牌自动识别**功能。


**车牌ROI区域提取:**


根据读取的车辆图片,预处理进行车牌ROI区域提取,主要通过Opencv的图像处理相关知识点来完成。主要包括对图像去噪、二值化、边缘轮廓提取、矩形区域矫正、蓝绿黄车牌颜色定位识别。核心代码如下:



author:CSDN-Dragon少年

预处理

def pretreatment(self, car_pic):
if type(car_pic) == type(“”):
img = self.__imreadex(car_pic)
else:
img = car_pic
pic_hight, pic_width = img.shape[:2]

if pic_width > self.MAX_WIDTH:
    resize_rate = self.MAX_WIDTH / pic_width
    img = cv2.resize(img, (self.MAX_WIDTH, int(pic_hight \* resize_rate)),
                     interpolation=cv2.INTER_AREA)  # 图片分辨率调整
blur = self.cfg["blur"]
# 高斯去噪
if blur > 0:
    img = cv2.GaussianBlur(img, (blur, blur), 0)
oldimg = img
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((20, 20), np.uint8)
img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)  # 开运算
img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);  # 与上一次开运算结果融合
# cv2.imshow('img\_opening', img\_opening)

# 找到图像边缘
ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)  # 二值化
img_edge = cv2.Canny(img_thresh, 100, 200)
# cv2.imshow('img\_edge', img\_edge)

# 使用开运算和闭运算让图像边缘成为一个整体
kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)  # 闭运算
img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)  # 开运算
# cv2.imshow('img\_edge2', img\_edge2)
# cv2.imwrite('./edge2.png', img\_edge2)
# 查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = [cnt for cnt in contours if cv2.contourArea(cnt) > self.Min_Area]
# 逐个排除不是车牌的矩形区域
car_contours = []
for cnt in contours:
    # 框选 生成最小外接矩形 返回值(中心(x,y), (宽,高), 旋转角度)
    rect = cv2.minAreaRect(cnt)
    # print('宽高:',rect[1])
    area_width, area_height = rect[1]
    # 选择宽大于高的区域
    if area_width < area_height:
        area_width, area_height = area_height, area_width
    wh_ratio = area_width / area_height
    # print('宽高比:',wh\_ratio)
    # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
    if wh_ratio > 2 and wh_ratio < 5.5:
        car_contours.append(rect)
        box = cv2.boxPoints(rect)
        box = np.int0(box)
# 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
card_imgs = []
for rect in car_contours:
    if rect[2] > -1 and rect[2] < 1:  # 创造角度,使得左、高、右、低拿到正确的值
        angle = 1
    else:
        angle = rect[2]
    rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle)  # 扩大范围,避免车牌边缘被排除
    box = cv2.boxPoints(rect)
    heigth_point = right_point = [0, 0]
    left_point = low_point = [pic_width, pic_hight]
    for point in box:
        if left_point[0] > point[0]:
            left_point = point
        if low_point[1] > point[1]:
            low_point = point
        if heigth_point[1] < point[1]:
            heigth_point = point
        if right_point[0] < point[0]:
            right_point = point
    if left_point[1] <= right_point[1]:  # 正角度
        new_right_point = [right_point[0], heigth_point[1]]
        pts2 = np.float32([left_point, heigth_point, new_right_point])  # 字符只是高度需要改变
        pts1 = np.float32([left_point, heigth_point, right_point])
        M = cv2.getAffineTransform(pts1, pts2)
        dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
        self.__point_limit(new_right_point)
        self.__point_limit(heigth_point)
        self.__point_limit(left_point)
        card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
        card_imgs.append(card_img)

    elif left_point[1] > right_point[1]:  # 负角度

        new_left_point = [left_point[0], heigth_point[1]]
        pts2 = np.float32([new_left_point, heigth_point, right_point])  # 字符只是高度需要改变
        pts1 = np.float32([left_point, heigth_point, right_point])
        M = cv2.getAffineTransform(pts1, pts2)
        dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
        self.__point_limit(right_point)
        self.__point_limit(heigth_point)
        self.__point_limit(new_left_point)
        card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
        card_imgs.append(card_img)
#使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
colors = []
for card_index, card_img in enumerate(card_imgs):
    green = yellow = blue = black = white = 0
    try:
        # 有转换失败的可能,原因来自于上面矫正矩形出错
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
    except:
        print('BGR转HSV失败')
        card_imgs = colors = None
        return card_imgs, colors

    if card_img_hsv is None:
        continue
    row_num, col_num = card_img_hsv.shape[:2]
    card_img_count = row_num \* col_num

    # 确定车牌颜色
    for i in range(row_num):
        for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if 11 < H <= 34 and S > 34:  # 图片分辨率调整
                yellow += 1
            elif 35 < H <= 99 and S > 34:  # 图片分辨率调整
                green += 1
            elif 99 < H <= 124 and S > 34:  # 图片分辨率调整
                blue += 1

            if 0 < H < 180 and 0 < S < 255 and 0 < V < 46:
                black += 1
            elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225:
                white += 1
    color = "no"
    # print('黄:{:<6}绿:{:<6}蓝:{:<6}'.format(yellow,green,blue))

    limit1 = limit2 = 0
    if yellow \* 2 >= card_img_count:
        color = "yellow"
        limit1 = 11
        limit2 = 34  # 有的图片有色偏偏绿
    elif green \* 2 >= card_img_count:
        color = "green"
        limit1 = 35
        limit2 = 99
    elif blue \* 2 >= card_img_count:
        color = "blue"
        limit1 = 100
        limit2 = 124  # 有的图片有色偏偏紫
    elif black + white >= card_img_count \* 0.7:
        color = "bw"
    # print(color)
    colors.append(color)
    # print(blue, green, yellow, black, white, card\_img\_count)
    if limit1 == 0:
        continue

    # 根据车牌颜色再定位,缩小边缘非车牌边界
    xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
    if yl == yh and xl == xr:
        continue
    need_accurate = False
    if yl >= yh:
        yl = 0
        yh = row_num
        need_accurate = True
    if xl >= xr:
        xl = 0
        xr = col_num
        need_accurate = True
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
    if need_accurate:  # 可能x或y方向未缩小,需要再试一次
        card_img = card_imgs[card_index]
        card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
        xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
        if yl == yh and xl == xr:
            continue
        if yl >= yh:
            yl = 0
            yh = row_num
        if xl >= xr:
            xl = 0
            xr = col_num
    card_imgs[card_index] = card_img[yl:yh, xl:xr] \
        if color != "green" or yl < (yh - yl) // 4 else card_img[yl - (yh - yl) // 4:yh, xl:xr]
# cv2.imshow("result", card\_imgs[0])
# cv2.imwrite('1.jpg', card\_imgs[0])
# print('颜色识别结果:' + colors[0])
return card_imgs, colors

至此我们就可以输出车牌ROI区域和车牌颜色了,效果如下:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/2dafebe9fe164152b17a60c3dc52b38a.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)  
 **车牌自动识别:**


车牌识别博主自己写了一个基于Opencv和SVM的识别系统,由于代码篇幅较长,本篇不进行展示(**感兴趣的可以私信博主获取源码**)。本篇介绍调用百度AI提供的车牌识别接口 – [百度AI开放平台链接](https://bbs.csdn.net/topics/618317507),识别效果也非常不错。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/62e798dd37ad4b80a0ef0c4602fcaa12.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)  
 这里面我们可以创建一个车牌识别的应用,其中的**API Key及Secret Key**后面我们调用车牌识别检测接口时会用到。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/46c115f4eacb4b3f9225ed983f295dae.png)  
 我们可以看到官方提供的帮助文档,介绍了如何**调用请求URL数据格式,向API服务地址使用POST发送请求**,必须在URL中带上参数**access\_token**,可通过后台的API Key和Secret Key生成。这里面的API Key和Secret Key就是我们上面提到的。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/668a9a4094df4d5686f12285d366f768.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)  
 接下来我们看看调用车牌识别接口代码示例。  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/da4f9e85018b4f6b9c7f2e6abe60d6af.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)  
 那我们如何获取识别的车牌号码呢?API文档可以看到里面有个**words\_result字典** ,其中的**color代表车牌颜色** ,**number代表车牌号码** 。这样我就可以知道识别的车牌颜色和车牌号了。


![在这里插入图片描述](https://img-blog.csdnimg.cn/0987df63ffe04d8b9ef98c8d935bff9a.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hobGFkbWluaGhs,size_16,color_FFFFFF,t_70)  
 车牌识别的接口调用流程基本已经清楚了,下面就可以进行代码实现了。



author:CSDN-Dragon少年

def get_token(self):
host = ‘https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=’ + self.client_id + ‘&client_secret=’ + self.client_secret
response = requests.get(host)
if response:
token_info = response.json()
token_key = token_info[‘access_token’]
return token_key

author:CSDN-Dragon少年

def get_license_plate(self, car_pic):
result = {}
card_imgs, colors = self.pretreatment(car_pic)
request_url = “https://aip.baidubce.com/rest/2.0/ocr/v1/license_plate”
# 二进制方式打开图片文件
f = open(car_pic, ‘rb’)
img = base64.b64encode(f.read())
params = {“image”: img}
access_token = self.get_token()
request_url = request_url + “?access_token=” + access_token
headers = {‘content-type’: ‘application/x-www-form-urlencoded’}
response = requests.post(request_url, data=params, headers=headers)
if response:
print(response.json())
license_result = response.json()[‘words_result’][‘number’]
card_color = response.json()[‘words_result’][‘color’]
if license_result != []:
result[‘InputTime’] = time.strftime(“%Y-%m-%d %H:%M:%S”)
result[‘Type’] = self.cardtype[card_color]
result[‘Picture’] = card_imgs[0]
result[‘Number’] = ‘’.join(license_result[:2]) + ‘·’ + ‘’.join(license_result[2:])
try:
result[‘From’] = ‘’.join(self.Prefecture[license_result[0]][license_result[1]])
except:
result[‘From’] = ‘未知’

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 21
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 是的,Python车牌文本识别终端源代码免费。Python是一种开源的编程语言,因此其相关的库和工具也是免费提供的。对于车牌文本识别,可以使用一些常用的Python图像处理和机器学习库,如OpenCV、TensorFlow和Keras等。这些库提供了丰富的功能和算法,可以用于图像处理、特征提取和模型训练等任务。 在获取源代码时,可以通过互联网搜索引擎找到许多开源项目和示例代码,供我们学习和使用。这些开源项目通常提供了车牌检测和识别的基本实现,我们可以根据自己的需求进行二次开发和定制。此外,还可以在GitHub等代码托管平台上找到一些优秀的开源项目,这些项目由社区开发者共享,提供了完整的源代码以及相应的文档和教程。 通过使用免费的Python车牌文本识别终端源代码,我们可以在项目中快速实现车牌的定位、字符分割和识别等功能。这对于交通管理、智能停车和安防等领域有着广泛的应用。此外,Python作为一种易学易用的编程语言,也为开发者提供了更多的灵活性和可拓展性,可以根据不同的需求进行算法的优化和业务的扩展。 总的来说,免费的Python车牌文本识别终端源代码为我们提供了一个快速搭建车牌识别系统的基础,使我们能够更加便捷地开展相关研究和应用。 ### 回答2: Python车牌文本识别终端源代码是免费提供的。Python是一种开源的编程语言,有着庞大的开发者社区和丰富的开源资源。在车牌文本识别领域,也有许多开源的Python库和工具,可用于实现车牌文本的识别。 对于车牌文本识别终端,也可以在GitHub等开源代码托管平台上找到许多开源项目,其中包含了完整的Python源代码。这些源代码通常是免费提供的,任何人都可以免费使用、修改和发布。 免费提供Python车牌文本识别终端源代码的好处是,可以帮助开发者学习和理解车牌识别算法的实现原理,提高编程技能。同时,开源代码也促进了信息的自由流动和分享,可以共同推动车牌文本识别技术的进步。 此外,由于Python是一种易学易用的编程语言,许多开发者都喜欢使用它进行开发。Python拥有丰富的第三方库和工具,可以简化开发过程,并提供各种功能模块来支持车牌文本识别任务。因此,Python车牌文本识别终端源代码是非常有价值且受欢迎的资源。 总之,对于想要进行车牌文本识别的开发者,可以找到许多免费提供的Python车牌文本识别终端源代码,用于学习、开发和研究。通过开源社区的共享精神,我们可以充分利用这些资源来推动车牌识别技术的发展。 ### 回答3: Python车牌文本识别终端源代码是免费提供的。目前,有许多开源的车牌识别库和算法可以用于开发自己的车牌文本识别终端。例如,OpenALPR是一个知名的免费开源车牌识别库,基于Python语言开发,提供了车牌检测、识别和字符分割的功能。此外,还有许多其他的开源车牌识别项目,如EasyPR、ANPR、HyperLPR等,也可以免费获取源代码并进行修改和使用。 获取这些开源项目的源代码非常简单,只需要在Github或其他开源代码托管平台上找到相应的项目,然后下载源代码并进行配置和使用即可。在获取源代码后,可以根据实际需求对代码进行修改和优化,以适应特定的车牌识别任务。通常,这些开源项目都会提供丰富的文档和示例代码,以帮助用户理解和使用源代码。 总之,Python车牌文本识别终端源代码是免费提供的,通过获取和使用开源的车牌识别项目,我们可以方便地开发自己的车牌文本识别终端。这使得我们能够快速构建车牌识别系统,并通过对源代码的修改和调试来满足特定的需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值