最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
由于我只想使用 Tesseract API,因此此处选择不创建快捷方式,勾选 Do not create shortcuts
前复选框,如果需要快捷方式,取消勾选此复选框即可。
- 点击
Install
开始安装。
- 安装完成后,点击
Next
。
- 最后点击
Finish
完成安装。
Tesseract-OCR配置
将 Tesseract 添加进环境变量中。右键单击“此电脑
”,选择“属性
”,单击“高级系统设置
”,然后单击“环境变量
”,“编辑
”系统环境变量“Path
”,选择“新建
”将 Tesseract-OCR 的安装目录(此处展示的安装目录为默认位置,如果修改了安装目录需要根据自己的安装位置进行修改)添加到环境变量中。
“确定
”生效后,可以在 shell
中运行以下命令进行验证:
tesseract -v
若成功配置,则会打印版本信息:
tesseract v4.0.0.20190314
leptonica-1.78.0
libgif 5.1.4 : libjpeg 8d (libjpeg-turbo 1.5.3) : libpng 1.6.34 : libtiff 4.0.9 : zlib 1.2.11 : libwebp 0.6.1 : libopenjp2 2.2.0
Found AVX2
Found AVX
Found SSE
安装Python调用Tesseract API所需依赖项
pip install pillow
pip install pytesser3
pip install pytesseract
如果需要提取的文字并非英文,则还需要下载其他语言的数据包,但是,如果在安装过程已经选择了所需的附加语言数据则不需要再次下载;否则需要在下载所需语言包后,将其置于 C:\Program Files\Tesseract-OCR\tessdata
目录下(如果修改了默认安装目录,需要根据自己的安装位置进行修改)。
除了直接使用程序外,还可以使用以下两种方式调用 Tesseract。
命令行模式
命令格式如下:
tesseract 输入图片的文件名 输出文件名 [-l lang][-psm pagesegmode][configfile…]
例如识别 “test.png” 图片中文字,保存至 “result.txt” 文件中。
tesseract test.png result
可以看到识别的准确率非常优秀。
使用 Python 调用 Tesseract API
测试使用 Tesseract 识别中文的准确率。
import pytesseract
from PIL import Image
img = Image.open(“test_1.png”)
print(pytesseract.image_to_string(img,lang=‘chi_sim’))
识别图片:
识别结果:
通过反射填充(reflection padding)减少块伪影
当我们在卷积层中将填充( padding )应上
的图像q
导致块伪影。减少这些高频分量的一种方法是在网络训练
于输入张量时,在张量周围填充常数
网
-
首先,通过将|
-
然后减去原始|
像移动一个像素来计算高频分量,
像以创建一个矩阵。
加添加总变分损失( total variation loss )作为正则化器:
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!