maotai[‘Daily Return’].hist()
plt.tight_layout();

#### **股票收盘价之间的相关性**
如果想分析中所有股票的回报呢?
可以将每个股票数据框构建一个包含所有`['Close']`列的DataFrame。将所有的收盘价为白酒股列表到一个DataFrame
index = maotai.index
closing_df = pd.DataFrame()
for company, company_n in zip(company_list,company_name_c):
temp_df = pd.DataFrame(index=company.index,
data = company[‘close’].values ,
columns=[company_n])
closing_df = pd.concat([closing_df,temp_df],axis=1)
看看数据
closing_df.head()

现在我们有了所有的收盘价,让我们继续获取所有股票的日回报,就像我们对茅台股票做的那样。
liquor_rets = closing_df.pct_change()
liquor_rets.head()

现在可以比较两支股票的日收益率来检验相关性。
首先让我们看一只股票和它本身的比较。将贵州茅台股票与自身进行比较,应该会显示出一个完美的线性关系
sns.jointplot(‘maotai’, ‘maotai’,
tech_rets, kind=‘scatter’,
color=‘seagreen’)

我们将使用joinplot来比较贵州茅台和五粮液的日收益。
sns.jointplot(‘贵州茅台’, ‘五粮液’,
liquor_rets, kind=‘scatter’)

因此,现在可以看到,如果两个股票是完全(和正的)相互相关,它的日回报值之间的线性关系应该发生。
**Seaborn和**使得我们很容易对我们的技术股票行情列表中的每一个可能的股票组合重复这种比较分析。我们可以使用`sns.pairplot()` 自动创建这个绘图。
可以简单地调用上的`pairplot`来对所有比较进行自动可视化分析
sns.pairplot(liquor_rets, kind=‘reg’)

上面我们可以看到所有股票之间的日回报关系。快速浏览一下贵州茅台和五粮液日收益之间的有趣关联。研究这种个体比较可能会很有趣。
虽然仅仅调用`sns.pairplot()`非常简单,但也可以使用`sns.pairgrid()`来完全控制图形,包括对角线上的哪种图、上三角形和下三角形。下面是一个充分利用[seaborn]的力量来实现这一结果的例子。
通过命名为returns_fig来设置我们的图形,
在DataFrame上调用PairPLot
return_fig = sns.Pai