题目描述
呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i 层楼(1≤i≤N)上有一个数字 Ki(0≤Ki≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3,3,1,2,5代表了 Ki(K1=3,K2=3,……),从 1 楼开始。在 1 楼,按“上”可以到 4 楼,按“下”是不起作用的,因为没有 −2 楼。那么,从 A 楼到 B 楼至少要按几次按钮呢?
输入格式
共二行。
第一行为三个用空格隔开的正整数,表示 N,A,B(1≤N≤200,1≤A,B≤N)。
第二行为 N 个用空格隔开的非负整数,表示 Ki。
输出格式
一行,即最少按键次数,若无法到达,则输出 -1
。
输入输出样例
输入 #1复制
5 1 5 3 3 1 2 5
输出 #1复制
3
说明/提示
对于 100% 的数据,1≤N≤200,1≤A,B≤N,0≤Ki≤N。
代码如下:
#include<iostream>
#include<queue>
using namespace std;
int a[201],n,dir[201],A,B;
struct node{//结构体
int x,step;
node(int xx,int st){
x=xx;
step=st;
}
};
int bfs(int sx){//广搜
queue<node> q;//队列
q.push(node(sx,0));
a[sx]=1;//标记已走过
while(!q.empty()){
node p=q.front();
int m=p.x,s=p.step;
if(m==B) return s;
if(m+dir[m]>0&&m+dir[m]<=n&&!a[m+dir[m]]){//判断向上楼层合法且尚未到过
q.push(node(m+dir[m],s+1));
a[m+dir[m]]=1;
}
if(m-dir[m]>0&&m-dir[m]<=n&&!a[m-dir[m]]){//判断向下楼层合法且尚未到过
q.push(node(m-dir[m],s+1));
a[m-dir[m]]=1;
}
q.pop();
}
return -1;
}
int main(){
cin>>n>>A>>B;//输入
for(int i=1;i<=n;i++) cin>>dir[i];
cout<<bfs(A);
return 0;
}