- 如果指向的值比监视哨里的值小,那把监视哨里的值存入这个元素之后
- 以此类推
代码:
void InsSort(RecordType r[], int length)
/* 对记录数组r做直接插入排序,length为数组中待排序记录的数目*/
{
int i,j;
for (i=2; i<=length; i++)
{
r[0]=r[i]; /将待插入记录存放到监视哨r[0]中/
j=i-1;
while (r[0].key< r[j].key ) /* 寻找插入位置 */
{
r[j+1]= r[j];
j=j-1;
}
r[j+1]=r[0]; /将待插入记录插入到已排序的序列中/
}
} /* InsSort */
特点:
- 稳定排序
- 时间复杂度O(n*n), 空间复杂度O(1)
2.折半插入排序
算法讲解:
- 动态图没找到,只能用上面这张图片了
- 折半插入和折半查找思想差不多,对于一个有序的数组,将一个数字插入之后任然有序
- k=要插入的值 low=1, high=length , mid=(low+high)+1 mid对应的值比k大, high=low-1,否则 low=mid+1,
- 当low >high ,low后面就是k插入的位置
代码:
void BinSort (RecordType r[], int length)
/对记录数组r进行折半插入排序,length为数组的长度/
{
int i,j;
RecordType x;
int low,high,mid;
for (i=2; i<=length ; ++i )
{
x= r[i]; low=1; high=i-1;
while (low<=high ) /* 确定插入位置*/
{
mid=(low+high) / 2;
if ( x.key< r[mid].key) high=mid-1;
else low=mid+1;
}
for ( j=i-1 ; j>= low; --j ) r[j+1]= r[j]; /* 记录依次向后移动 */
r[low]=x; /* 插入记录 */
}
}/BinSort/
特点:
- 稳定排序
- 时间复杂度O(n*n), 空间复杂度O(1)
3.希尔排序
动态演示:
算法讲解:
- 对于希尔排序来说取增量 d (d一般为奇数,并且逐次递减)
- 上图第一次排序d等于5,将第一个作为起始点,下标+5取下一个值,一直到最后,将去到的值从小到达排序,然后将第二个作为起始点,3 4 5依次作为起始点排序
- 第二次是d等于3
- 第三次是d等于1
代码:
void ShellInsert(RecordType r[], int length, int delta)
/对记录数组r做一趟希尔插入排序,length为数组的长度,delta 为增量/
{ int i,j;
for(i=1+delta;i<= length; i++) /* 1+delta为第一个子序列的第二个元素的下标 */
if(r[i].key < r[i-delta].key)
{
r[0]= r[i]; /* 备份r[i] (不做监视哨) */
for(j=i-delta; j>0 &&r[0].key < r[j].key; j-=delta)
r[j+delta]= r[j];
r[j+delta]= r[0];
}
}/ShellInsert/
特点:
- 不稳定排序方法
- 增量序列的d取值无除1之外的公因子,最后一个增量值必须为1
- 时间复杂度O(nlogn) 空间复杂度O(1)
四、交换类排序
1.冒泡排序
动态演示:
算法讲解:
- 设立两个指针,i,j
- 每一次排序都会把最大的一个数放到后面,依次类推,假设执行2次以后,那么最后2个数就不需要比较了
- 执行n-1次排序,结果完成
代码:
void BubbleSort(RecordType r[], int length )
/对记录数组r做冒泡排序,length为数组的长度/
{ int n,i,j; nt change; RecordType x; n=length; change=TRUE;
for ( i=1 ; i<= n-1 && change ;++i )
{ change=FALSE;
for ( j=1 ; j<= n-i ; ++j)
if (r[j].key > r[j+1].key )
{
x= r[j];
r[j]= r[j+1];
r[j+1]= x;
change=TRUE;
}
}
} /* BubbleSort
特点:
- 稳定排序
- 时间复杂度O(n*n), 空间复杂度O(1)
2.快速排序
动态演示:
算法讲解:
- 快速排序讲起来稍微有点复杂,其实就是划分区域
- 建立两个指针low high 分别指向第一个和第二个元素,把第一个元素的值赋给x变量
- high向前移动,假如high指向的值小于x,则high指向的值与x互换
- low向后移动,假如low指向的值大于x,则low指向的值与x互换
- 重复3 4两步,知道high==low,第一次结束
- 将low指向第二个元素,把第二个元素的值赋给x变量
- 重复操作,知道元素有序
代码:
1.递归算法
void QKSort(RecordType r[],int low, int high )
/对记录数组r[low…high]用快速排序算法进行排序/
{
int pos;
if(low<high)
{
pos=QKPass(r, low, high); /调用一趟快速排序,将枢轴元素为界划分两个子表/
QKSort(r, low, pos-1); /对左部子表快速排序/
QKSort(r, pos+1, high); /对右部子表快速排序/
}
}
2.非递归算法:
int QKPass(RecordType r[],int left,int right)
/对记录数组r 中的r[left]至r[right]部分进行一趟排序,并得到基准的位置,使得排序后的结果满足其之后(前)的记录的关键字均不小于(大于)于基准记录/
{
RecordType x; int low,high;
x= r[left]; /* 选择基准记录*/
low=left; high=right;
while ( low<high )
{
while (low< high && r[high].key>=x.key ) /* high从右到左找小于x.key的记录 */
high–;
if ( low <high ) {r[low]= r[high]; low++;} /* 找到小于x.key的记录,则进行交换*/
while (low<high && r[low].key<x.key ) /* low从左到右找大于x.key的记录 */
low++;
if ( low<high ){ r[high]= r[low]; high–; } /* 找到大于x.key的记录,则交换*/
}
r[low]=x; /将基准记录保存到low=high的位置/
return low; /返回基准记录的位置/
} /* QKPass */
特点:
- 不稳定排序,但内部排序中公认效率最好的一种
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数前端工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Web前端开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注:前端)
前端面试题是我面试过程中遇到的面试题,每一次面试后我都会复盘总结。我做了一个整理,并且在技术博客找到了专业的解答,大家可以参考下:
由于篇幅有限,只能分享部分面试题,完整版面试题及答案可以【点击我】阅读下载哦~无偿分享给大家
感悟
总结。我做了一个整理,并且在技术博客找到了专业的解答,大家可以参考下:
由于篇幅有限,只能分享部分面试题,完整版面试题及答案可以【点击我】阅读下载哦~无偿分享给大家
感悟
春招面试的后期,运气和实力都很重要,自己也是运气比较好,为了回馈粉丝朋友们(毕竟自己也玩了这么久哈哈哈),整理个人感悟和总结以上。最后祝愿大家能够收获理想offer!!