既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
1、导入模块
Pandas数据处理
读取数据
import pandas as pd
from collections import Counter
###画图
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.globals import ThemeType
from pyecharts.charts import Bar, Pie, Timeline
from pyecharts.faker import Faker
datafile = u'/home/mw/input/university_data1034/
data = pd.read_excel(datafile)
data.head()
2、不同省份大学数量
###不同省份大学数量
attr = data['省份'].tolist()
result = Counter(attr)
# 排序
d = sorted(result.items(), key=lambda x: x[1], reverse=True)
#print(d)
#for i in d:
# print(i)
provinces = [i[0] for i in d]
value = [i[1] for i in d]
#print(provinces)
#print(value)
c = (
Map()
.add("", [list(z) for z in zip(provinces, value)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(title="分段型数据"),
visualmap_opts=opts.VisualMapOpts(max_=200, split_number=8, is_piecewise=True),
)
)
c.render_notebook()
3、统计省份对应不同市大学数量
##统计省份对应不同市大学数量



**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**