先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
数据清洗
数据去重
用删除重复项功能
删除重复项是Excel提供的数据去重功能,可以快速删除重复项。
•选中要计算的区域
•在数据菜单下点击删除重复值按钮
•选择要对比的列,如果所有列的值均相同则删除重复数据
•点击确定,相容内容则被删除,仅保留唯一值
条件格式删除重复项
使用排序的方法删除重复项有一个问题,当数据是一串编码时,依然难以用肉眼看出重复的编码。
用条件格式可以自动找出重复的数据,并手动删除。
数据->删除重复项->选择删除条件
缺失值处理
三种处理缺失值的常用方法
1.填充缺失值,一般可以用平均数/中位数/众数等统计值,也可以使用算法预测。
中位数:是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。
众数:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数。
2.删除缺失值,如果数据缺失比例过高,可以考虑删除,比如某一列数据>50%都是缺失,可以考虑删除这一列。
3.忽略默认值,不去处理
用平均值填充缺失值
•选择B列数据,计算平均值
•将平均值单独复制一行(选择值粘贴),务必复制,否则将会出现循环引用。
循环引用:A单元格中的公式应用了B单元格,B单元格中的公式又引用了A
•Ctrl+G唤出定位菜单,选的定位空值,找到B列的所有空值
•应用平均值数据,按住Ctrl+Enter同时填充所有缺失值位置
数据加工
数据计算
1.简单计算
在Excel中,使用函数要学会为单元格“命名”。单元格名称加上运算符号可以进行单元格数值的简单计算。
如第B列的第3个单元格,名称为“B3”。
常用的运算符与我们数学中使用的完全一致,加(+),减(-),乘(*),除(/)
那么A1单元格与A2单元格数据之和的计算公式,就为“=A1+A2”。
1.常用函数计算
使用函数计算数据,需要名称区域单元格的命名方法。
如A1单元到B6单元格区域,命名方法是在两个单元格名称中间加“:”号,写法为“A1:B6”。
用函数计算数据,公式写法如下:英文“=”号加函数再加数据区域。
如计算A1单元到B6单元格区域的和,求和函数为SUM,那么公式写法为:=SUM(A1:B6)。
举例:
Excel【公式】选项卡中提供了常用函数的快捷插入,在记不住常用函数的前提下,可以通过插入的方式进行
数据转换
1.数据分类
使用VLOOKUP进行数据分组,要设置一个条件区域,目的是告诉函数,用什么依据来为数据进行分组。
2.数据重组
根据数据分析目标的不同,所需要的数据项目也不同。在数据分析时,会将所有可能用到的数据都统计到一起。
此时可能出现数据多余、数据项目符合需求等情况,此时就需要重新组合现有数据。
输入: =vlookup会自动弹出函数vlookup,用鼠标单机函数,不要enter回车。然后输入三个参数(数据,规则,返回结果列)
3.数据合并
数据拆分是指将一列数据分为多列,而数据合并是指将多列数据合并为一列。
例如将省份列、城市列数据,合并为省份+城市列数据,又例如,将年份、月份数据合并为年龄+月份数据。
在进行数据合并时,需要灵活使用逻辑连接符和文本转换函数:
在使用逻辑连接符和函数合并数据时,逻辑符与函数可以联合使用。
并且可能出现合并的数据文字表述不清晰,需要添加个别字词连接的情况。
此时可以将字词放在英文双引号中进行合并。
输入: conca自动提示,选择第一个字符串合并
选择要合并的字符串用英文逗号分隔,额外添加的字符串也用逗号分隔,用英文单引号或者双引号包起来
保留原百分号,需要用到文本的格式化
数据排序
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-Bow8s4Gb-1713689227721)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!