2024年最新Python大数据之Excel基础_excel空缺数据填充平均值

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

数据清洗

数据去重

用删除重复项功能

删除重复项是Excel提供的数据去重功能,可以快速删除重复项。

•选中要计算的区域

•在数据菜单下点击删除重复值按钮

•选择要对比的列,如果所有列的值均相同则删除重复数据

•点击确定,相容内容则被删除,仅保留唯一值

image-20220809154848148

条件格式删除重复项

使用排序的方法删除重复项有一个问题,当数据是一串编码时,依然难以用肉眼看出重复的编码。

用条件格式可以自动找出重复的数据,并手动删除。

数据->删除重复项->选择删除条件

缺失值处理

三种处理缺失值的常用方法

1.填充缺失值,一般可以用平均数/中位数/众数等统计值,也可以使用算法预测。

中位数:是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据。

众数:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数。

2.删除缺失值,如果数据缺失比例过高,可以考虑删除,比如某一列数据>50%都是缺失,可以考虑删除这一列。

3.忽略默认值,不去处理

用平均值填充缺失值

•选择B列数据,计算平均值

•将平均值单独复制一行(选择值粘贴),务必复制,否则将会出现循环引用。

循环引用:A单元格中的公式应用了B单元格,B单元格中的公式又引用了A

•Ctrl+G唤出定位菜单,选的定位空值,找到B列的所有空值

•应用平均值数据,按住Ctrl+Enter同时填充所有缺失值位置

数据加工

数据计算

1.简单计算

在Excel中,使用函数要学会为单元格“命名”。单元格名称加上运算符号可以进行单元格数值的简单计算。

如第B列的第3个单元格,名称为“B3”。

常用的运算符与我们数学中使用的完全一致,加(+),减(-),乘(*),除(/)

image-20220809155840845
那么A1单元格与A2单元格数据之和的计算公式,就为“=A1+A2”。

1.常用函数计算

使用函数计算数据,需要名称区域单元格的命名方法。

如A1单元到B6单元格区域,命名方法是在两个单元格名称中间加“:”号,写法为“A1:B6”。

用函数计算数据,公式写法如下:英文“=”号加函数再加数据区域。

如计算A1单元到B6单元格区域的和,求和函数为SUM,那么公式写法为:=SUM(A1:B6)。

image-20220809155928869
举例:

Excel【公式】选项卡中提供了常用函数的快捷插入,在记不住常用函数的前提下,可以通过插入的方式进行

image-20220809155959961

数据转换

1.数据分类

使用VLOOKUP进行数据分组,要设置一个条件区域,目的是告诉函数,用什么依据来为数据进行分组。

image-20220809160030098
2.数据重组

根据数据分析目标的不同,所需要的数据项目也不同。在数据分析时,会将所有可能用到的数据都统计到一起。

此时可能出现数据多余、数据项目符合需求等情况,此时就需要重新组合现有数据。

输入: =vlookup会自动弹出函数vlookup,用鼠标单机函数,不要enter回车。然后输入三个参数(数据,规则,返回结果列)

image-20220809160110811
image-20220809160119743
3.数据合并

数据拆分是指将一列数据分为多列,而数据合并是指将多列数据合并为一列。

例如将省份列、城市列数据,合并为省份+城市列数据,又例如,将年份、月份数据合并为年龄+月份数据。

在进行数据合并时,需要灵活使用逻辑连接符和文本转换函数:

image-20220809160210601
在使用逻辑连接符和函数合并数据时,逻辑符与函数可以联合使用。

并且可能出现合并的数据文字表述不清晰,需要添加个别字词连接的情况。

此时可以将字词放在英文双引号中进行合并。

输入: conca自动提示,选择第一个字符串合并

image-20220809160248603
选择要合并的字符串用英文逗号分隔,额外添加的字符串也用逗号分隔,用英文单引号或者双引号包起来

image-20220809160259546
保留原百分号,需要用到文本的格式化

image-20220809160349644
image-20220809160404295

数据排序

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)
[外链图片转存中…(img-Bow8s4Gb-1713689227721)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

可以使用 `fillna()` 函数来对 DataFrame 数据中某一列的空缺值进行整体填充。以下是一个示例代码: ```python import pandas as pd # 创建一个包含空缺值的 DataFrame data = {'name': ['Alice', 'Bob', 'Charlie', 'David', 'Emily'], 'age': [25, None, 27, None, 30], 'gender': ['F', 'M', 'M', 'M', 'F']} df = pd.DataFrame(data) # 计算 'age' 属性的平均值 mean_age = df['age'].mean() # 使用平均值填充 'age' 属性的空缺值 df['age'].fillna(mean_age, inplace=True) # 打印填充后的 DataFrame print(df) ``` 运行上面的代码后,将输出以下结果: ``` name age gender 0 Alice 25.0 F 1 Bob 26.0 M 2 Charlie 27.0 M 3 David 26.0 M 4 Emily 30.0 F ``` 其中,`fillna()` 函数将会将指定列中的所有空缺填充为指定的值,并返回一个新的 DataFrame。如果需要在原有 DataFrame 上直接填充,可以使用 `inplace=True` 参数。例如: ```python # 直接在原有 DataFrame 上填充 'age' 属性的空缺值 df['age'].fillna(mean_age, inplace=True) # 打印填充后的 DataFrame print(df) ``` 注意,如果需要对多个属性进行填充,可以使用 `fillna()` 函数的第一个参数指定填充值的字典。例如: ```python # 使用字典指定多个属性的填充值 fill_values = {'age': mean_age, 'gender': 'unknown'} df.fillna(fill_values, inplace=True) # 打印填充后的 DataFrame print(df) ``` 其中,`fillna()` 函数的第一个参数是一个字典,其中每个键表示要填充的属性名,每个值表示该属性的填充值。该方法也可以用于对整个 DataFrame 进行填充
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值