# Version: 2.5.1
# FROM paddlepaddle/paddle:2.5.1
FROM registry.baidubce.com/paddlepaddle/paddle:2.5.1
# PaddleOCR base on Python3.7
RUN pip3.7 install --no-cache-dir --upgrade pip -i https://mirror.baidu.com/pypi/simple
RUN pip3.7 install --no-cache-dir paddlehub --upgrade -i https://mirror.baidu.com/pypi/simple
RUN git clone https://gitee.com/PaddlePaddle/PaddleOCR.git /PaddleOCR
WORKDIR /PaddleOCR
RUN pip3.7 install --no-cache-dir -r requirements.txt -i https://mirror.baidu.com/pypi/simple
RUN mkdir -p /PaddleOCR/inference/
# 下载并解压 OCR 文本检测模型
ADD https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar /PaddleOCR/inference/
# 下载并解压 OCR 文本方向分类模型
ADD https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar /PaddleOCR/inference/
# 下载并解压 OCR 文本识别模型
ADD https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/ch_PP-OCRv3_det_infer.tar -C /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/ch_ppocr_mobile_v2.0_cls_infer.tar -C /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/ch_PP-OCRv3_rec_infer.tar -C /PaddleOCR/inference/
RUN pip3.7 uninstall -y astroid
RUN pip3.7 install astroid==2.12.2 --upgrade pip -i https://mirror.baidu.com/pypi/simple
RUN pip3.7 uninstall protobuf
RUN pip3.7 install protobuf==3.20.0 --upgrade pip -i https://mirror.baidu.com/pypi/simple
# 安装ocr\_system服务
RUN hub install deploy/hubserving/ocr_system/
# 安装表格识别,下载基于SLANet的中文表格识别模型,如果只需要文本提取,则可以不安装该服务,删掉这一块即可
ADD https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar /PaddleOCR/inference/
ADD https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/ch_ppstructure_mobile_v2.0_SLANet_infer.tar -C /PaddleOCR/inference/
RUN tar xf /PaddleOCR/inference/en_ppocr_mobile_v2.0_table_structure_infer.tar -C /PaddleOCR/inference/
#安装structure\_table服务
RUN hub install deploy/hubserving/structure_table/
EXPOSE 8866
CMD ["/bin/bash","-c","hub serving start -m ocr\_system structure\_table"]
创建好Dockerfile文件后,执行如下命令即可自动构建镜像,要预留足够的存储空间,构建完成后大概6G多,整个构建过程根据网速定,我花了差不多1.5小时才构建完。
docker build -t paddle-ocr:cpu .
2. 运行
docker run -dp 8866:8866 --name ocr paddle-ocr:cpu
当然也可以用 docker-compose 管理
version: '3'
services:
ocr:
image: paddle-ocr:cpu
restart: always
container_name: ocr
ports:
- 8866:8866
3. 服务配置
镜像运行后,使用 docker exec -it ocr bash 进入容器内进行修改,修改后重新容器即可。
- 文本检测+文本方向分类+文本识别3阶段串联服务(ocr_system)配置文件是deploy/hubserving/ocr_system/params.py,包含模型路径和相关参数,这里使用默认配置即可,如果更换模型需要对应修改配置文件。
- 表格识别服务(structure_table)配置.
#打开配置文件
vim deploy/hubserving/structure_table/params.py
#调整模型文件路径为./inference/ch\_ppstructure\_mobile\_v2.0\_SLANet\_infer/
#调整字典文件路径为./ppocr/utils/dict/table\_structure\_dict\_ch.txt
4. 测试调用
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
<version>4.5.14</version>
</dependency>
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import sun.misc.BASE64Encoder;
import java.io.IOException;
import java.io.InputStream;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.text.ParseException;
public class HttpUtils {
//接口地址
//private static final String apiURL = "http://192.168.0.101:8866/predict/structure\_table";
private static final String apiURL = "http://192.168.0.101:8866/predict/ocr\_system";
public static void main(String[] args) throws ParseException {
JSONArray arry = new JSONArray();
JSONObject param = new JSONObject();
arry.add(fileToBase64("C:\\Users\\Aaron\\Pictures\\2.PNG"));
param.put("images",arry);
String result = HttpUtils.post(apiURL, param.toJSONString());
System.out.println(result);
}
/**
* 调用 API
*/
public static String post(String url, String parameters) {
HttpPost post = new HttpPost(url);
// 建立一个NameValuePair数组,用于存储欲传送的参数
post.addHeader("Content-type","application/json");
post.setHeader("Accept", "application/json");
post.setEntity(new StringEntity(parameters, StandardCharsets.UTF_8));
long startTime = System.currentTimeMillis();
try (CloseableHttpClient httpClient = HttpClients.createDefault()){
HttpResponse response = httpClient.execute(post);
long endTime = System.currentTimeMillis();
int statusCode = response.getStatusLine().getStatusCode();
System.out.println("statusCode:" + statusCode);
System.out.println("调用API 花费时间(单位:秒):" + (endTime - startTime)/1000);
if (statusCode != HttpStatus.SC_OK) {
System.out.println("Method failed:" + response.getStatusLine());
}
String body = EntityUtils.toString(response.getEntity(),"utf-8");
return body;
} catch (IOException e) {
// 网络错误
e.printStackTrace();
}
return "";
}
public static String fileToBase64(String path) {
// 读取图片字节数组
try (InputStream in = Files.newInputStream(Paths.get(path))){
byte[] data = new byte[in.available()];
in.read(data);
**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**
**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**
**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**





**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**
**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**
**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**

**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
**
**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
[外链图片转存中...(img-7pYAt10v-1712957061986)]
**一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**