既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
第四章 填空 1.HBase是针对谷歌BigTable的开源实现,是一个高可靠、高性能、面向列、可伸缩的分布式数据库,主要用来存储非结构化和半结构化的松散数据。 P63 选择 2.BigTable是一个分布式存储系统,利用谷歌提出的**_分布式并行计算模型来处理海量数据。 P63 MapReduce 3.HBase只有一个索引——_,通过巧妙的设计,HBase中的所有访问方法,或者通过行健访问,或者通过行健扫描,从而使得整个系统不会慢下来。 P65 行健 4._**___是HBase中最核心的模块,负责维护分配给自己的Region,并响应用户的读写请求。 选择 P75 Region服务器
判断 1.BigTable是一个分布式存储系统,使用谷歌分布式文件系统MapReduce作为底层数据存储。 错 P63 2.分布式数据库HBase的数据类型只有字符串。 对 P64 3.HBase操作不存在复杂的表与表之间的关系,只有简单的插入、查询、删除、清空等。
对 P64 4.在HBase中执行更新操作时,会在生成一个新版本之前删除数据旧的版本。 P65 错 5.HBase的系统架构中的客户端是指用户。 P74 错
单选 1.当一个客户端从Zookeeper服务器上拿到-ROOT-表的地址以后,就可以通过**_**_找到用户数据表所在的Region服务器,并直接访问该Region服务器获得数据。 A.一级寻址 B.二级寻址 C.三级寻址 D.四级寻址 P74 C
多选 1.HBase的实现包括3个主要的功能组件:____。 A.库函数 B.一个Master主服务器 C.一个Region服务器 D.许多个Region服务器 ABD P71
第五六章 下列选项中(B)不是NoSQL数据库的特点。 灵活的可扩展性 B.动态的数据迁移 C.与云计算紧密融合 D.灵活的数据模型 NoSQL的英文全称(Not only Structual Query Language)。 NoSQL的英文全称为 No Structual Query Language。× 关系数据库无法满足Web2.0的需求主要表现在哪几个方面(ACD) 无法满足海量数据的管理需求 无法满足数据完整性的需求 无法满足数据高并发性的需求 无法满足高可扩展性和高可用性的需求 与分布式对应的方式是(集中式) Hadoop属于开发运行环境中的运行环境。√ 为保证一致性,关系数据库遵守ACID模型,NoSQL数据库遵守BASE模型。√ NoSQL数据库的明显优势在于(BCD)。 实现数据完整性 支持超大规模数据存储 灵活的数据模型可以很好的支持Web2.0应用 具有强大的横向扩展能力 Web2.0网站系统通常要求严格的数据库事务。× NoSQL的四大类型为键值数据库、(列族数据库)、文档数据库、图数据库 下列选项中©不是文档数据库的优点。 性能好 B.灵活性高 C.统一的查询语法 D.数据结构灵活 NoSQL的三大基石包括(CAP、BASE、最终一致性)。 CAP中的C与CAID中的C的含义一样。× NewSQL这类数据库不仅具有NoSQL对海量数据的存储管理能力,还保持了传统数据库支持ACID和SQL等特性。√ 最终一致性根据更新数据后各进程访问到数据的时间和方式的不同,可以进行区别。下列说法正确的是(ABCD)。 因果一致性 “读己之所写”一致性 会话一致性 单调一致性 “软状态”是指(状态可以有一段时间不同步,具有一定的滞后性)。 云计算八大优势为按需服务、随时服务、通用性、(高可靠性)、极其廉价、超大规模、(虚拟化)、高扩展性。 云计算主要包括3种类型,即(IaaS、PaaS、SaaS)。 云计算可同时为众多用户提供服务。√ 下列关于云数据库的特点,错误的是(A)。 高可靠性 B.高可扩展性 C.采用多租形式 D.支持资源有效分布 关系数据库采用(关系数据)模型,NoSQL数据库采用(非关系数据)模型。 云数据库有专属与自己的数据模型。× UMP系统是低成本和高性能的MySQL数据库方案,关键模块采用Erlang语言实现。√ 下列为UMP系统架构设计遵循的原则的是(ABCD)。 保持单一的系统对外入口,并且为系统内部维护单一的资源池 保持单一故障,保证服务的高可用性 保证系统具有良好的可伸缩性,能够动态地增加、删减计算与存储节点 保证分配给用户的资源是弹性可伸缩的,资源之间相互隔离,保证应用和数据的安全 Mnesia是一个集中式数据库管理系统。× 下列选项不属于Zookeeper主要发挥的作用的是(D)。 作为全局的配置服务器 提供分布式锁 监视所有MySQL实例 支持透明的数据分片 UMP系统借助于()来实现集群内部的负载均衡。 Mnesia B.Zookeeper C.LVS D.Controller服务器 UMP系统功能为(容灾)、读写分离、资源管理、资源调度、(资源隔离)和数据安全。 UMP系统只为一个用户创建一个MySQL实例。× 资源池是为MySQL实例分配资源的基本单位。√ UMP系统采用哪两种资源隔离方式(AB)。 用Cgroup限制MySQL进程资源 在Proxy服务器限制QPS 通过MySQL实例的迁移 采用资源池机制管理数据库服务器资源 UMP系统是如何保障数据安全的(ABCD)。 SQL拦截 记录用户操作日志 数据访问IP白名单 SSL数据库连接 RDS英文全称为(Relational Database Service)。 RDS实例或简称“实例”,是用户购买RDS服务的基本单位。√ 在用户购买RDS实例时,所选择的内存大小已经决定了该实例的最大连接数。√ 新建RDS账号,MySQL实例支持最多创建20个账号,SQL Server实例支持最多创建50个账号。× 下列哪个不是连接RDS for MySQL数据库的方法©。 使用客户端MySQL-Front访问 使用数据库管理工具Navicat MySQL 使用Shell命令登录 使用阿里云控制台iDB Cloud访问 HBase采用“四维坐标”定位一个单元格。√ 行键是按照字典序存储。√ 访问HBase表中的行有哪几种方式(ABD)。 通过单个行键访问 通过一个行键的区间来访问 直接读取 全表扫描 41.colFamily指的是(列族)。
第七章 填空: 1.MapReduce的核心函数:_ _ 答案:P132 Map Reduce 2.MapReduce的核心思想可以用**_来描述。 答案:P134 分而治之 3.MapReduce整个工作流程的核心环节是_过程。 答案:P136 Shuffle 4.Shuffle过程分为_端的操作和_端的操作。 答案:P136 Map Reduce 5.MapReduce是___编程框架。 答案:P131 分布式并行 6.MapReduce的处理单位是__ 答案:P课件15 split
7.大规模数据集的处理包括_****__和**______两个核心环节。 答案:P134 分布式存储 分布式计算
单选: 1.Hadoop框架是用©实现的。 P133 A.C B.C++ C.java D.VB 2.以下哪项不是MapReduce体系结构的主要组成部分(D) P课件9 A.Client B.JobTracker C.TaskTracker D.TaskScheduler 3.每个Map任务分配一个缓存,MapReduce默认缓存是(A) P137 A.100MB B.80MB C.120MB D.200MB 4.以下哪项不属于步骤不包含在溢写过程中(B) P137 A.分区 B.归并 C.排序 D.合并 5.Reduce从©读取数据。 P135 A.本地存储 B.磁盘 C.硬盘 D.主存 6.Map任务的输入文件、Reduce任务的处理结果都是保存在(A)的。P135 A.分布式文件系统 B.本地存储 C.硬盘 D.主存
多选: 1.下面关于MapReduce工作流程说法正确的是(ABD) P135 A.不同的Map任务之间不会进行通信。 B.不同的Reduce任务之间也不会发生任何信息交换。 C.用户能显式的从一台机器向另一台机器发送信息 D.所有的数据交换都是通过MapReduce框架自身去实现的。 2.Map端的Shuffle过程包括以下哪几个步骤。(ABCD) P136 A.输入数据和执行Map任务 B.写入缓存 C.溢写(分区、排序、合并) D.文件归并 3.Reduce端的Shuffle过程包括(ABD) P138 A.“领取”数据 B.归并数据
C.溢写 D.把数据输入到Reduce任务 4.基于MapReduce模型的关系上的标准运算,包括(ABCD) P142 A.选择运算 B.投影运算 C.并、交、差运算 D.自然连接运算 5.MapReduce执行的全过程包括以下几个主要阶段(ABCD) P151
A.从分布式文件系统读入数据 B.执行Map任务输出中间结果 C.通过Shuffle阶段把中间结果分区排序整理后发送给Reduce任务 D.执行Reduce任务得到最终结果并写入分布式系统文件 6.MapReduce的广泛应用包括(ABCD) P151 A.关系代数运算 B.分组与聚合运算 C.矩阵-向量乘法 D.矩阵乘法 7.与传统并行计算框架相比,以下哪些是MapReduce的优势(ABC) P课件6 A.非共享式,容错性好 B.普通PC机,便宜,扩展性好 C.编程/学习难度较简单 D.实时、细粒度计算、计算密集型
判断: 1.MapReduce设计的一个理念是“计算向数据靠拢”,而不是“数据向计算靠拢” (√) P133 2.MapReduce程序一定要用java来写。 (×) P133 3.Map函数和Reduce函数都是以作为输入(√) P133
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新