AFL++简单学习_afl,2024年最新零基础网络安全开发

选择测试目标

例如: Cisco RV130 VPN 路由器的固件:https://software.cisco.com/download/home/285026141/type/282465789/release/1.0.3.55?i=!pp
该文件名为RV130X_FW_1.0.3.55.bin
使用binwalk提取二进制文件,jsonparse和xmlparser1二进制文件进行模糊测试,由于没有源码,所以需要使用qemu模式
例如:
TP-Link SR20路由器的固件,固件的下载地址如下:https://static.tp-link.com/2018/201806/20180611/SR20(US)_V1_180518.zip

$ binwalk -Me tpra_sr20v1_us-up-ver1-2-1-P522_20180518-rel77140_2018-05-21_08.42.04.bin

了解目标接受的输入

qemu-arm-static和 --help 参数运行xmlparser1会显示用法
在这里插入图片描述
我们可以创建一个测试 XML 文件并运行xmlparser1。
在这里插入图片描述

收集语料库

对于基于变异的模糊测试工具而言,需要为其准备一个或多个起始的输入案例,这些案例通常能够很好的测试目标程序的预期功能,这样我们就可以尽可能多的覆盖目标程序。

收集语料的来源多种多样。通常目标程序会包含一些测试用例,我们可以将其做位我们初始语料的一部分,此外互联网上也有些公开的语料库你可以收集他们做为你的需要。

关于语料库的主动性选择,这个更多需要你对fuzzing 目标内部结构的了解。例如你当你要fuzzing的目标对随着输入的规模内存变化非常敏感,那么制作一批很大的文件与较小的文件可能是一个策略,具体是否是否有效取决于你经验、以及对目标的理解。

此外,需要注意控制语料库的规模,太过庞大的语料库并不是好的选择,太过潘达的语料库会拖慢fuzzing的效率,尽可能用相对较小的语料覆盖更多目标代码的预期功能即可。

一些常见的在线样本集

https://files.fuzzing-project.org/
http://samples.ffmpeg.org/
http://lcamtuf.coredump.cx/afl/demo/
https://github.com/MozillaSecurity/fuzzdata
https://github.com/strongcourage/fuzzing-corpus
https://github.com/Cisco-Talos/clamav-fuzz-corpus
https://github.com/mozilla/pdf.js/tree/master/test/pdfs
https://github.com/codelibs/fess-testdata
https://github.com/google/honggfuzz/tree/master/examples/apache-httpd

精简语料库

在AFL++中可以使用工具afl-cmin从语料库中去除不会产生新路径和覆盖氛围的重复输入,并且AFL++官方提示强烈建议我们对语料库唯一化,这是一个几乎不会产生坏处的友谊操作。
具体的使用如下:

  • 将收集到的所有种子文件放入一个目录中,例如 INPUTS。
  • 运行 afl-cmin:

如果要通过模糊测试来调用目标程序 bin/target INPUTFILE ,请将目标程序将从中读取的 INPUTFILE 参数替换为 @@

afl-cmin -i INPUTS -o INPUTS_UNIQUE – bin/target -someopt @@

如果目标从 stdin(标准输入)读取,只需省略 , @@ 因为这是默认值:

afl-cmin -i INPUTS -o INPUTS_UNIQUE – bin/target -someopt

构建输入输出文件

需要自行构建输入文件夹:用来存储初始种子,即将上述种子存到一个文件夹中
需要构建输出文件夹:用来存储测试反馈与记录

运行AFL++

如果程序从 stdin 读取,afl-fuzz请像这样运行:

./afl-fuzz -i seeds_dir -o output_dir –
/path/to/tested/program […program’s cmdline…]

要添加字典,请添加-x /path/to/dictionary.txt到 afl-fuzz。
如果程序从文件获取输入,则可以将其放入@@程序的命令行中;AFL++ 将为您放置一个自动生成的文件名。
以上面目标为例:

$ QEMU_LD_PREFIX=./squashfs-root/ /home/iot/tools/AFLplusplus/afl-fuzz -Q -i squashfs-root/bmp-input/ -o squashfs-root/bmp-output/ – ./squashfs-root/usr/bin/bmp2tiff @@ /dev/null # root权限下

-Q:适用qemu模式

-i:输入文件夹

-o:输出文件夹

@@:表示将用来替换的样本

/dev/null:忽略错误信息

$ QEMU_LD_PREFIX=./squashfs-root/ …/AFLplusplus/afl-fuzz
-Q
-i input-xml/
-o output-xml/
– ./squashfs-root/usr/sbin/xmlparser1 -f @@

双连字符 (–) 之后的所有内容都指定要与其参数一起运行的目标程序。@@ 参数代表文件名。在运行时,AFL++ 会将@@ 参数替换为输入文件的名称。

结果分析

输出目录会有结果信息
触发崩溃的两个文件位于/default/crashes目录中。
可以进一步重复执行造成crash的种子
在这里插入图片描述

总结

AFL++作为一个覆盖率引导的模糊测试工具,拥有自己的变异算法,由于其使用广泛,因此相关教程及实验资料较多,学习使用的曲线平滑,并且其目前更新频率较高,对LLVM的支持以及各类Sanitizer的支持也使得其能更快的发现更多的漏洞。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数网络安全工程师,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注网络安全获取)
img

一、网安学习成长路线图

网安所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、网安视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述

三、精品网安学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、网络安全源码合集+工具包

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

五、网络安全面试题

最后就是大家最关心的网络安全面试题板块
在这里插入图片描述在这里插入图片描述

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

.csdnimg.cn/b07abbfab1fd4edc800d7db3eabb956e.png)

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-tQ9h3c1x-1712645419786)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值