最全StarRocks数据导入,2024年最新大数据开发原生开发如何深入进阶

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

2.1、数据准备
2.1.1、在Kafka中创建主题behavior和province
kafka-topics.sh --zookeeper 192.168.110.101:2181 --create --replication-factor 1 --partitions 1 --topic behavior

kafka-topics.sh --zookeeper 192.168.110.101:2181 --create --replication-factor 1 --partitions 1 --topic province

2.1.2、向主题behavior生产数据
kafka-console-producer.sh  --broker-list 192.168.110.101:9092 --topic behavior

2.1.3、生产数据
10001,zs,18,11,shopping
10002,ls,19, 11,add
10003,ww,19,61,star

2.1.4、向主题province生产数据
kafka-console-producer.sh  --broker-list 192.168.110.101:9092 --topic province


2.1.5、生产数据
11,北京
61,陕西

2.2、StarRocks准备
2.2.1、创建主键模型表s_province
create database starrocks;
use starrocks;
CREATE TABLE IF NOT EXISTS starrocks.`s\_province` (
  `uid` int(10) NOT NULL COMMENT "",
  `p\_id` int(2) NOT NULL COMMENT "",
  `p\_name` varchar(30) NULL COMMENT ""
)
PRIMARY KEY(`uid`)
DISTRIBUTED BY HASH(`uid`) BUCKETS 1
PROPERTIES (
"replication\_num" = "1",
-- 限主键模型
"enable\_persistent\_index" = "true"
);

2.3、Flink准备
2.3.1、启动Flink
 ./start-cluster.sh

2.3.2、启动sql-client
/sql-client.sh embedded

2.3.3、执行Flink SQL,创建上下游的映射表

1、Source部分,创建Flink向Kafka的映射表kafka_source_behavior

CREATE TABLE kafka_source_behavior (
    uuid int,
    name string,
    age int,
    province_id int,
    behavior string
) WITH (
    'connector' = 'kafka',
    'topic' = 'behavior',
    'properties.bootstrap.servers' = '192.168.110.101:9092',
    'properties.group.id' = 'source\_behavior',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv'
);

2、创建映射表kafka_source_province

CREATE TABLE kafka_source_province (
    pid int,
    p_name string
) WITH (
    'connector' = 'kafka',
    'topic' = 'province',
    'properties.bootstrap.servers' = '192.168.110.101:9092',
    'properties.group.id' = 'source\_province',
    'scan.startup.mode' = 'earliest-offset',
    'format' = 'csv'
);

3、Sink部分,创建Flink向StarRocks的映射表sink_province

CREATE TABLE sink_province (
   uid INT,
   p_id INT,
   p_name STRING,
   PRIMARY KEY (uid) NOT ENFORCED
)WITH (
   'connector' = 'starrocks',
   'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
   'load-url'='192.168.110.101:8030',
   'database-name' = 'starrocks',
   'table-name' = 's\_province',
   'username' = 'root',
   'password' = 'root',
   'sink.buffer-flush.interval-ms' = '5000',
   'sink.properties.column\_separator' = '\x01',
   'sink.properties.row\_delimiter' = '\x02'
);

2.3.4、执行同步任务

执行Flink SQL,开始同步任务

insert into sink_province select b.uuid as uid, b.province_id as p_id, p.p_name from kafka_source_behavior b join kafka_source_province p on b.province_id = p.pid;

2.4、StarRocks查看数据
mysql -h192.168.110.101 -P9030 -uroot –proot

use starrocks;
select \* from s_province;

3、Flink JDBC读取MySQL数据写入StarRocks

使用Flink JDBC方式读取MySQL数据的实时场景不多,因为JDBC下Flink只能获取执行命令时MySQL表的数据,所以更适合离线场景。假设有复杂的MySQL数据,就可以在Flink中跑定时任务,来获取清洗后的数据,完成后写入StarRocks。

3.1、MySQL准备
3.1.1、MySQL中创建表s_user
use ODS;
CREATE TABLE `s\_user` (
   `id` INT(11) NOT NULL,
   `name` VARCHAR(32) DEFAULT NULL,
   `p\_id` INT(2) DEFAULT NULL,
   PRIMARY KEY (`id`)
);

3.1.2、插入数据
insert into s_user values(10086,'lm',61),(10010, 'ls',11), (10000,'ll',61);

3.2、StarRocks准备
3.2.1、StarRocks创建表s_user
use starrocks;
CREATE TABLE IF NOT EXISTS starrocks.`s\_user` (
   `id` int(10) NOT NULL COMMENT "",
   `name` varchar(20) NOT NULL COMMENT "",
   `p\_id` INT(2) NULL COMMENT ""
)
PRIMARY KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication\_num" = "1",
-- 限主键模型
"enable\_persistent\_index" = "true"
);

3.3、Flink创建映射表
3.3.1、启动Flink(服务未停止,可以跳过)
 ./start-cluster.sh

3.3.2、启动sql-client
./sql-client.sh embedded

3.3.3、Source部分,创建映射至MySQL的映射表source_mysql_suser
CREATE TABLE source_mysql_suser (
   id INT,
   name STRING,
   p_id INT,
   PRIMARY KEY (id) NOT ENFORCED
)WITH (
   'connector' = 'jdbc',
   'url' = 'jdbc:mysql://192.168.110.102:3306/ODS',
   'table-name' = 's\_user',
   'username' = 'root',
   'password' = 'root'
);

3.3.4、Sink部分,创建至StarRocks的映射表sink_starrocks_suser
CREATE TABLE sink_starrocks_suser (
   id INT,
   name STRING,
   p_id INT,
   PRIMARY KEY (id) NOT ENFORCED
)WITH (
   'connector' = 'starrocks',
   'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
   'load-url'='192.168.110.101:8030',
   'database-name' = 'starrocks',
   'table-name' = 's\_user',
   'username' = 'root',
   'password' = 'root',
   'sink.buffer-flush.interval-ms' = '5000',
   'sink.properties.column\_separator' = '\x01',
   'sink.properties.row\_delimiter' = '\x02'
);

3.3.5、Flink清洗数据并写入StarRocks

只是简单做一个where筛选,实际业务可能是多表join的复杂场景

insert into sink_starrocks_suser select id,name,p_id from source_mysql_suser where p_id = 61;

数据写入StarRocks后,Flink任务完成并结束。此时若再对MySQL中s_user表的数据进行增删或修改操作,Flink亦不会感知。

4、Flink读取StarRocks数据写入MySQL

还使用MySQL 中的s_user表和StarRocks的s_user表,将业务流程反转一下,读取StarRocks中的数据写入其他业务库,例如MySQL。

4.1、Flink创建映射表
4.1.1、启动Flink(服务未停止,可以跳过)
./start-cluster.sh

4.1.2、启动sql-client
./sql-client.sh embedded

4.1.3、Source部分,创建StarRocks映射表source_starrocks_suser
CREATE TABLE source_starrocks_suser (
   id INT,
   name STRING,
   p_id INT
)WITH (
   'connector' = 'starrocks',
   'scan-url'='192.168.110.101:8030',
   'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
   'database-name' = 'starrocks',
   'table-name' = 's\_user',
   'username' = 'root',
   'password' = 'root'
);

4.1.4、Sink部分,创建向MySQL的映射表sink_mysql_suser
CREATE TABLE sink_mysql_suser (
   id INT,
   name STRING,
   p_id INT,
   PRIMARY KEY (id) NOT ENFORCED
)WITH (
   'connector' = 'jdbc',
   'url' = 'jdbc:mysql://192.168.110.102:3306/ODS',
   'table-name' = 's\_user',
   'username' = 'root',
   'password' = 'root'
);

4.2、MySQL准备
4.2.1、清空MySQL s_user表数据,为一会儿导入新数据做准备
 use ODS;
truncate table s_user;

4.3、Flink执行导入任务

简单梳理操作,实际业务可能会对StarRocks中多个表的数据进行分组或者join等处理然后再导入。

 insert into sink_mysql_suser select id,name,p_id from source_starrocks_suser;

4.4、查看MySQL数据
 select \* from s_user;

5、Flink CDC同步MySQL数据至StarRocks

  • 使用FlinkJDBC来读取MySQL数据时,JDBC的方式是“一次性”的导入,若希望让Flink感知MySQL数据源的数据变化,并近实时的实现据 同步,就需要使用Flink CDC。
  • CDC是变更数据捕获(Change Data Capture)技术的缩写,它可以将源数据库(Source)的数据变动记录,同步到一个或多个数据目的地中(Sink)。直观的说就是当数据源的数据变化时,通过CDC可以让目标库中的数据同步发生变化(仅限于DML操作)。
  • 还使用前面MySQL的s_user表以及StarRocks的s_user表来演示。
5.1、MySQL准备
5.1.1、MySQL开启binlog(格式为ROW模式)

vi /etc/my.cnf

log-bin=mysql-bin  # 开启binlog
binlog-format=ROW # 选择ROW模式
server_id=1       # 配置MySQL replaction

5.1.2、重启MySQL服务:
systemctl restart mysqld

5.2、StarRocks准备
5.2.1、StarRocks中清空s_user表中的数据
mysql -h192.168.110.101 -P9030 -uroot –proot

use starrocks;
truncate table s_user;

5.3、Flink准备
5.3.1、启动Flink(服务未停止,可以跳过)
./start-cluster.sh

5.3.2、启动sql-client
./sql-client.sh embedded

5.3.3、Source部分,创建MySQL映射表cdc_mysql_suser
CREATE TABLE cdc_mysql_suser (
   id INT,
   name STRING,
   p_id INT
) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = '192.168.110.102',
   'port' = '3306',
   'username' = 'root',
   'password' = 'root',
   'database-name' = 'ODS',
   'scan.incremental.snapshot.enabled'='false',
   'table-name' = 's\_user'
);

5.3.4、Sink部分,创建向StarRocks的cdc_starrocks_suser
CREATE TABLE cdc_starrocks_suser (
   id INT,
   name STRING,
   p_id INT,
   PRIMARY KEY (id) NOT ENFORCED
)WITH (
   'connector' = 'starrocks',
   'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
   'load-url'='192.168.110.101:8030',
   'database-name' = 'starrocks',
   'table-name' = 's\_user',
   'username' = 'root',


![img](https://img-blog.csdnimg.cn/img_convert/0c0aa6cf2286ba122934780ea02847d9.png)
![img](https://img-blog.csdnimg.cn/img_convert/c9d5e2c93b15fb4aa2c261b5093be7ab.png)
![img](https://img-blog.csdnimg.cn/img_convert/e6e7e9e57b7f8bf20fd3f1607c375370.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

ED
)WITH (
   'connector' = 'starrocks',
   'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
   'load-url'='192.168.110.101:8030',
   'database-name' = 'starrocks',
   'table-name' = 's\_user',
   'username' = 'root',


[外链图片转存中...(img-knXMR2Oa-1715093714035)]
[外链图片转存中...(img-vxWDsFLg-1715093714035)]
[外链图片转存中...(img-RomeQTh9-1715093714035)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值