既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
2.1、数据准备
2.1.1、在Kafka中创建主题behavior和province
kafka-topics.sh --zookeeper 192.168.110.101:2181 --create --replication-factor 1 --partitions 1 --topic behavior
kafka-topics.sh --zookeeper 192.168.110.101:2181 --create --replication-factor 1 --partitions 1 --topic province
2.1.2、向主题behavior生产数据
kafka-console-producer.sh --broker-list 192.168.110.101:9092 --topic behavior
2.1.3、生产数据
10001,zs,18,11,shopping
10002,ls,19, 11,add
10003,ww,19,61,star
2.1.4、向主题province生产数据
kafka-console-producer.sh --broker-list 192.168.110.101:9092 --topic province
2.1.5、生产数据
11,北京
61,陕西
2.2、StarRocks准备
2.2.1、创建主键模型表s_province
create database starrocks;
use starrocks;
CREATE TABLE IF NOT EXISTS starrocks.`s\_province` (
`uid` int(10) NOT NULL COMMENT "",
`p\_id` int(2) NOT NULL COMMENT "",
`p\_name` varchar(30) NULL COMMENT ""
)
PRIMARY KEY(`uid`)
DISTRIBUTED BY HASH(`uid`) BUCKETS 1
PROPERTIES (
"replication\_num" = "1",
-- 限主键模型
"enable\_persistent\_index" = "true"
);
2.3、Flink准备
2.3.1、启动Flink
./start-cluster.sh
2.3.2、启动sql-client
/sql-client.sh embedded
2.3.3、执行Flink SQL,创建上下游的映射表
1、Source部分,创建Flink向Kafka的映射表kafka_source_behavior
CREATE TABLE kafka_source_behavior (
uuid int,
name string,
age int,
province_id int,
behavior string
) WITH (
'connector' = 'kafka',
'topic' = 'behavior',
'properties.bootstrap.servers' = '192.168.110.101:9092',
'properties.group.id' = 'source\_behavior',
'scan.startup.mode' = 'earliest-offset',
'format' = 'csv'
);
2、创建映射表kafka_source_province
CREATE TABLE kafka_source_province (
pid int,
p_name string
) WITH (
'connector' = 'kafka',
'topic' = 'province',
'properties.bootstrap.servers' = '192.168.110.101:9092',
'properties.group.id' = 'source\_province',
'scan.startup.mode' = 'earliest-offset',
'format' = 'csv'
);
3、Sink部分,创建Flink向StarRocks的映射表sink_province
CREATE TABLE sink_province (
uid INT,
p_id INT,
p_name STRING,
PRIMARY KEY (uid) NOT ENFORCED
)WITH (
'connector' = 'starrocks',
'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
'load-url'='192.168.110.101:8030',
'database-name' = 'starrocks',
'table-name' = 's\_province',
'username' = 'root',
'password' = 'root',
'sink.buffer-flush.interval-ms' = '5000',
'sink.properties.column\_separator' = '\x01',
'sink.properties.row\_delimiter' = '\x02'
);
2.3.4、执行同步任务
执行Flink SQL,开始同步任务
insert into sink_province select b.uuid as uid, b.province_id as p_id, p.p_name from kafka_source_behavior b join kafka_source_province p on b.province_id = p.pid;
2.4、StarRocks查看数据
mysql -h192.168.110.101 -P9030 -uroot –proot
use starrocks;
select \* from s_province;
3、Flink JDBC读取MySQL数据写入StarRocks
使用Flink JDBC方式读取MySQL数据的实时场景不多,因为JDBC下Flink只能获取执行命令时MySQL表的数据,所以更适合离线场景。假设有复杂的MySQL数据,就可以在Flink中跑定时任务,来获取清洗后的数据,完成后写入StarRocks。
3.1、MySQL准备
3.1.1、MySQL中创建表s_user
use ODS;
CREATE TABLE `s\_user` (
`id` INT(11) NOT NULL,
`name` VARCHAR(32) DEFAULT NULL,
`p\_id` INT(2) DEFAULT NULL,
PRIMARY KEY (`id`)
);
3.1.2、插入数据
insert into s_user values(10086,'lm',61),(10010, 'ls',11), (10000,'ll',61);
3.2、StarRocks准备
3.2.1、StarRocks创建表s_user
use starrocks;
CREATE TABLE IF NOT EXISTS starrocks.`s\_user` (
`id` int(10) NOT NULL COMMENT "",
`name` varchar(20) NOT NULL COMMENT "",
`p\_id` INT(2) NULL COMMENT ""
)
PRIMARY KEY(`id`)
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication\_num" = "1",
-- 限主键模型
"enable\_persistent\_index" = "true"
);
3.3、Flink创建映射表
3.3.1、启动Flink(服务未停止,可以跳过)
./start-cluster.sh
3.3.2、启动sql-client
./sql-client.sh embedded
3.3.3、Source部分,创建映射至MySQL的映射表source_mysql_suser
CREATE TABLE source_mysql_suser (
id INT,
name STRING,
p_id INT,
PRIMARY KEY (id) NOT ENFORCED
)WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://192.168.110.102:3306/ODS',
'table-name' = 's\_user',
'username' = 'root',
'password' = 'root'
);
3.3.4、Sink部分,创建至StarRocks的映射表sink_starrocks_suser
CREATE TABLE sink_starrocks_suser (
id INT,
name STRING,
p_id INT,
PRIMARY KEY (id) NOT ENFORCED
)WITH (
'connector' = 'starrocks',
'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
'load-url'='192.168.110.101:8030',
'database-name' = 'starrocks',
'table-name' = 's\_user',
'username' = 'root',
'password' = 'root',
'sink.buffer-flush.interval-ms' = '5000',
'sink.properties.column\_separator' = '\x01',
'sink.properties.row\_delimiter' = '\x02'
);
3.3.5、Flink清洗数据并写入StarRocks
只是简单做一个where筛选,实际业务可能是多表join的复杂场景
insert into sink_starrocks_suser select id,name,p_id from source_mysql_suser where p_id = 61;
数据写入StarRocks后,Flink任务完成并结束。此时若再对MySQL中s_user表的数据进行增删或修改操作,Flink亦不会感知。
4、Flink读取StarRocks数据写入MySQL
还使用MySQL 中的s_user表和StarRocks的s_user表,将业务流程反转一下,读取StarRocks中的数据写入其他业务库,例如MySQL。
4.1、Flink创建映射表
4.1.1、启动Flink(服务未停止,可以跳过)
./start-cluster.sh
4.1.2、启动sql-client
./sql-client.sh embedded
4.1.3、Source部分,创建StarRocks映射表source_starrocks_suser
CREATE TABLE source_starrocks_suser (
id INT,
name STRING,
p_id INT
)WITH (
'connector' = 'starrocks',
'scan-url'='192.168.110.101:8030',
'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
'database-name' = 'starrocks',
'table-name' = 's\_user',
'username' = 'root',
'password' = 'root'
);
4.1.4、Sink部分,创建向MySQL的映射表sink_mysql_suser
CREATE TABLE sink_mysql_suser (
id INT,
name STRING,
p_id INT,
PRIMARY KEY (id) NOT ENFORCED
)WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://192.168.110.102:3306/ODS',
'table-name' = 's\_user',
'username' = 'root',
'password' = 'root'
);
4.2、MySQL准备
4.2.1、清空MySQL s_user表数据,为一会儿导入新数据做准备
use ODS;
truncate table s_user;
4.3、Flink执行导入任务
简单梳理操作,实际业务可能会对StarRocks中多个表的数据进行分组或者join等处理然后再导入。
insert into sink_mysql_suser select id,name,p_id from source_starrocks_suser;
4.4、查看MySQL数据
select \* from s_user;
5、Flink CDC同步MySQL数据至StarRocks
- 使用FlinkJDBC来读取MySQL数据时,JDBC的方式是“一次性”的导入,若希望让Flink感知MySQL数据源的数据变化,并近实时的实现据 同步,就需要使用Flink CDC。
- CDC是变更数据捕获(Change Data Capture)技术的缩写,它可以将源数据库(Source)的数据变动记录,同步到一个或多个数据目的地中(Sink)。直观的说就是当数据源的数据变化时,通过CDC可以让目标库中的数据同步发生变化(仅限于DML操作)。
- 还使用前面MySQL的s_user表以及StarRocks的s_user表来演示。
5.1、MySQL准备
5.1.1、MySQL开启binlog(格式为ROW模式)
vi /etc/my.cnf
log-bin=mysql-bin # 开启binlog
binlog-format=ROW # 选择ROW模式
server_id=1 # 配置MySQL replaction
5.1.2、重启MySQL服务:
systemctl restart mysqld
5.2、StarRocks准备
5.2.1、StarRocks中清空s_user表中的数据
mysql -h192.168.110.101 -P9030 -uroot –proot
use starrocks;
truncate table s_user;
5.3、Flink准备
5.3.1、启动Flink(服务未停止,可以跳过)
./start-cluster.sh
5.3.2、启动sql-client
./sql-client.sh embedded
5.3.3、Source部分,创建MySQL映射表cdc_mysql_suser
CREATE TABLE cdc_mysql_suser (
id INT,
name STRING,
p_id INT
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.110.102',
'port' = '3306',
'username' = 'root',
'password' = 'root',
'database-name' = 'ODS',
'scan.incremental.snapshot.enabled'='false',
'table-name' = 's\_user'
);
5.3.4、Sink部分,创建向StarRocks的cdc_starrocks_suser
CREATE TABLE cdc_starrocks_suser (
id INT,
name STRING,
p_id INT,
PRIMARY KEY (id) NOT ENFORCED
)WITH (
'connector' = 'starrocks',
'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
'load-url'='192.168.110.101:8030',
'database-name' = 'starrocks',
'table-name' = 's\_user',
'username' = 'root',
![img](https://img-blog.csdnimg.cn/img_convert/0c0aa6cf2286ba122934780ea02847d9.png)
![img](https://img-blog.csdnimg.cn/img_convert/c9d5e2c93b15fb4aa2c261b5093be7ab.png)
![img](https://img-blog.csdnimg.cn/img_convert/e6e7e9e57b7f8bf20fd3f1607c375370.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
ED
)WITH (
'connector' = 'starrocks',
'jdbc-url'='jdbc:mysql://192.168.110.101:9030',
'load-url'='192.168.110.101:8030',
'database-name' = 'starrocks',
'table-name' = 's\_user',
'username' = 'root',
[外链图片转存中...(img-knXMR2Oa-1715093714035)]
[外链图片转存中...(img-vxWDsFLg-1715093714035)]
[外链图片转存中...(img-RomeQTh9-1715093714035)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**