【C++进阶】哈希(万字详解

函数声明功能介绍
size_t bucket_count()const返回哈希桶中桶的总个数
size_t bucket_size(size_t n)const返回n号桶中有效元素的总个数
size_t bucket(const K& key)返回元素key所在的桶号

🍃 1.1.3 unordered_set的文档介绍

unordered_set的在线文档介绍


🍃 1.1.4 unordered_map和unordered_set的使用
  • unordered_set
#include<iostream>
#include<unordered\_set>
#include<unordered\_map>
using namespace std;

void test\_unordered\_set()
{
    unordered_set<int> s;
    s.insert(3);
    s.insert(4);
    s.insert(5);
    s.insert(3);
    s.insert(1);
    s.insert(2);
    s.insert(6);
    unordered_set<int>::iterator it = s.begin();
    while (it != s.end())
    {
        cout << \*it << " ";
        ++it;
    }
    cout << endl;
}

int main()
{
    test\_unordered\_set();
    return 0;
}


在这里插入图片描述
可以看到它遍历出来是无序的,并且相同的数只会插入一次

  • unordered_map
#include<iostream>
#include<unordered\_map>
using namespace std;
void test\_unordered\_map()
{
    unordered_map<string, string> dict;
    dict.insert(make\_pair("string", "字符串"));
    dict.insert(make\_pair("sort", "排序"));
    dict.insert(make\_pair("string", "字符串"));
    dict.insert(make\_pair("string", "字符串"));
    auto it = dict.begin();
    while (it != dict.end())
    {
        cout << it->first << ":" << it->second << endl;
        it++;
    }
}
int main()
{
    test\_unordered\_map();
    return 0;
}


在这里插入图片描述
它遍历出来也是无序的,并且相同的数只会插入一次


🍂 1.2 在线OJ

在长度2N的数组中找出重复N次的元素

在这里插入图片描述

class Solution {
public:
    int repeatedNTimes(vector<int>& nums) {
        size_t N = nums.size() / 2;

        unordered_map<int,int> m;
        for(auto e : nums)
            m[e]++;

        for(auto &e : m)
        {
            if(e.second == N)
                return e.first;
        }
        return 0;
    }
};


两个数组的交集

在这里插入图片描述

class Solution {
public:
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
        // 用unordered\_set对nums1中的元素去重
        unordered_set<int> s1;
        for (auto e : nums1)
            s1.insert(e);

        // 用unordered\_set对nums2中的元素去重
        unordered_set<int> s2;
        for (auto e : nums2)
            s2.insert(e);
        
        // 遍历s1,如果s1中某个元素在s2中出现过,即为交集
        vector<int> vRet;
        for (auto e : s1)
        {
            if (s2.find(e) != s2.end())
                vRet.push\_back(e);
        }
        return vRet;
    }
};


两个数组的交集 ||

在这里插入图片描述

class Solution {
public:
    vector<int> intersect(vector<int>& nums1, vector<int>& nums2) {
        if (nums1.size() > nums2.size()) {
            return intersect(nums2, nums1);
        }
        unordered_map <int, int> m;
        for (int num : nums1) {
            ++m[num];
        }
        vector<int> intersection;
        for (int num : nums2) {
            if (m.count(num)) {
                intersection.push\_back(num);
                --m[num];
                if (m[num] == 0) {
                    m.erase(num);
                }
            }
        }
        return intersection;
    }
};


存在重复元素

在这里插入图片描述

class Solution {
public:
    bool containsDuplicate(vector<int>& nums) {
        unordered_set<int> s;
        for (int x: nums) {
            if (s.find(x) != s.end()) {
                return true;
            }
            s.insert(x);
        }
        return false;
    }
};


两句话中的不常见单词

在这里插入图片描述

class Solution {
public:
    vector<string> uncommonFromSentences(string s1, string s2) {
        unordered_map<string, int> freq;
        
        auto insert = [&](const string& s) {
            stringstream ss(s);
            string word;
            while (ss >> word) {
                ++freq[move(word)];
            }
        };

        insert(s1);
        insert(s2);

        vector<string> ans;
        for (const auto& [word, occ]: freq) {
            if (occ == 1) {
                ans.push\_back(word);
            }
        }
        return ans;
    }
};


🍁 2. 底层结构

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。

🍂 2.1 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(

l

o

g

2

N

log_2 N

log2​N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素

根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放

  • 搜索元素

对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

在这里插入图片描述
用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快

问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

发现4这个位置已经被占用了


🍂 2.2 哈希冲突

对于两个数据元素的关键字

k

i

k_i

ki​和

k

j

k_j

kj​(i != j),有

k

i

k_i

ki​ !=

k

j

k_j

kj​,但有:Hash(

k

i

k_i

ki​) == Hash(

k

j

k_j

kj​),

即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突
或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。

发生哈希冲突该如何处理呢?

🍂 2.3 哈希函数

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数:

  1. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况
  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
  3. 平方取中法–(了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
    再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
  4. 折叠法–(了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
  5. 随机数法–(了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。
    通常应用于关键字长度不等时采用此法
  6. 数学分析法–(了解)
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。
    例如:
    在这里插入图片描述假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
    数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突


🍂 2.4 哈希冲突解决

解决哈希冲突两种常见的方法是:闭散列和开散列

🍃 2.4.1 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。那如何寻找下一个空位置呢?

  1. 线性探测
    比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。
    线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。
  2. 二次探测
    线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为:

H

i

H_i

Hi​ = (

H

0

H_0

H0​ +

i

2

i^2

i2 )% m, 或者:

H

i

H_i

Hi​ = (

H

0

H_0

H0​ -

i

2

i^2

i2 )% m。其中:i = 1,2,3…,

H

0

H_0

H0​是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。
对于2.1中如果要插入44,产生冲突,使用解决后的情况为:
研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。
在这里插入图片描述

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。


🍃 2.4.2 闭散列的实现
#pargma once
namespace close_hash
{
    enum Status
    {
        EMPTY,//空
        EXIST,//存在
        DELETE//删除
    };
    template<class K,class V>
    struct HashData
    {
        pair<K,V> _kv;
      	Status _status = EMPTY; //状态
    };
    template<class K>
    struct HashFunc
    {
        size_t operator()(const K&key)
        {
            return key;
        }
    };    
    //特化
    template<>
    struct HashFunc<string>
    {
        size_t operator()(const string& key)
        {
            //BKDR Hash思想
            size_t hash = 0;
            for(size_t i = 0;i<key.size();++i)
            {
                hash\*=131;
                hash += key[i];//转成整形
            }
            return hash;
        }
    };  
    template<class K,class V,class Hash = HashFunc<K>>
   	class HashTable
    {
    public:
        bool Erase(const K& key)
        {
            HashData<K,V>\* ret = Find(key);
            if(ret == nullptr)
            {
                //没有这个值
                return false;
            }
            else
            {
                //伪删除
                ret->_status = DELETE;
                _n--;
                return true;
            }
        }
        HashData<K,V>\* Find(const K& key)
        {
            if(_table.size() == 0)
            {
                //防止除0错误


![img](https://img-blog.csdnimg.cn/img_convert/8364e291383540606bfab3b188cf468b.png)
![img](https://img-blog.csdnimg.cn/img_convert/ce9ed10ff769a75339db3ac2871d0e55.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

V>\* ret = Find(key);
            if(ret == nullptr)
            {
                //没有这个值
                return false;
            }
            else
            {
                //伪删除
                ret->_status = DELETE;
                _n--;
                return true;
            }
        }
        HashData<K,V>\* Find(const K& key)
        {
            if(_table.size() == 0)
            {
                //防止除0错误


[外链图片转存中...(img-VnzZPp6Q-1714430529546)]
[外链图片转存中...(img-HzWrBZX9-1714430529546)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

  • 27
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值