先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
正文
queue = manager.Queue(maxsize=16384)
当你执行queue.put(data)操作时,如果队列已满(即队列中的元素数量已经达到maxsize指定的数量),那么PUT操作会被阻塞,也就是说这一行代码会被暂时挂起不往下执行,直到队列中有元素被取走,队列有足够的空间放入新的元素,put操作才会继续执行并把元素放入队列。
需要注意的是,put方法还有一个可选参数block,默认为True。当block=False时,如果队列已满,put操作将会立即抛出queue.Full异常,而不会发生阻塞。
4. “消费和心跳是在同一个线程中进行的,心跳会强制中断消费吗?”
>
> 不会。在Kafka客户端的设计中,消费消息(即poll操作)和发送心跳是在同一个线程中进行的,但这并不意味着心跳会强制中断消息消费操作。
>
>
> 在Kafka Consumer的实现中,心跳发送采用了轮询的方式,即只有当执行poll操作时,才可能会发送心跳。而大部分的时间,线程都在执行消息消费操作,因此并不会被心跳操作强制中断。只有当消息消费完毕,线程进入轮询时,心跳操作才可能被执行。
>
>
> 但是,如果消息消费速度太慢,或者每一次消费的消息数(由`max.poll.records`控制)过大,导致一次poll操作的处理时间过长,可能会导致在一段时间内(由`session.timeout.ms`控制)没有发送任何心跳给Kafka Broker,此时Kafka Broker便会误以为该Consumer已经离线,从而触发了rebalance操作,重新分配partition。
>
>
>
5. “下游的kafka数据很多时,会影响上游的kafka数据生产吗?”
>
> 一般来说,下游(消费者)对Kafka数据的消费速度,不会直接影响到上游(生产者)对Kafka的数据生产。因为在Kafka的设计中,生产者和消费者是解耦和的,各自基于自己的缓冲策略和处理速率进行处理。
>
>
>
6. “python的time.sleep会占用CPU时间吗?”
>
> 在Python中,`time.sleep()`函数是让当前的执行线程暂停指定的秒数。在此期间,该线程不会占用CPU进行计算,因为它进入了阻塞(休眠)状态,直到设定的时间到达。所以,`time.sleep()`函数本身不会占用CPU时间。
>
>
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**
![img](https://img-blog.csdnimg.cn/img_convert/07eee81146599c564fbbbdc49025fcf2.png)
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**