最新机器学习算法(5)—— 集成学习算法_集成学习算法库(2),大数据开发开发工程师面试题目

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

2.2 随机森林

随机森林是 Bagging 的一个特例

在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

随机森林 = Bagging + 决策树

2.2.1 随机森林的构造

在这里插入图片描述

例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True

随机森林够造过程中的关键步骤(M表示特征数目):

  • 一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)
  • 随机去选出m个特征, m << M,建立决策树

思考:

  • 为什么要随机抽样训练集?  
    如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
  • 为什么要有放回地抽样?
    如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。
2.2.2 包外估计

在随机森林构造过程中,如果进行有放回的抽样,我们会发现,总是有一部分样本我们选不到。

  • 这部分数据,占整体数据的比重有多大呢?
  • 这部分数据有什么用呢?

在这里插入图片描述
在这里插入图片描述
由于基分类器是构建在训练样本的自助抽样集上的,只有约 63.2% 原样本集出现在中,而剩余的 36.8% 的数据作为包外数据,可以用于基分类器的验证集。

经验证,包外估计是对集成分类器泛化误差的无偏估计

无偏估计:就是认为所有样本出现的概率一样
有偏估计:就是偏重那些出现次数多的样本,认为样本的概率是不一样的

包外估计的用途

  • 当基学习器是决策树时,可使用包外样本来辅助剪枝 ,或用于估计决策树中各结点的后验概率以辅助对零训练样本结点的处理;
  • 当基学习器是神经网络时,可使用包外样本来辅助早期停止以减小过拟合 。
2.2.3 随机森林api介绍

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)

  • n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200

    • 在利用最大投票数或平均值来预测之前,你想要建立子树的数量。
  • Criterion:string,可选(default =“gini”)

    • 分割特征的测量方法
  • max_depth:integer或None,可选(默认=无)

    • 树的最大深度 5,8,15,25,30
  • max_features="auto”,每个决策树的最大特征数量

    • If “auto”, then max_features=sqrt(n_features).
    • If “sqrt”, then max_features=sqrt(n_features)(same as “auto”).
    • If “log2”, then max_features=log2(n_features).
    • If None, then max_features=n_features.
  • bootstrap:boolean,optional(default = True)

    • 是否在构建树时使用放回抽样
  • min_samples_split 内部节点再划分所需最小样本数

    • 这个值限制了子树继续划分的条件,如果某节点的样本数少于min_samples_split,则不会继续再尝试选择最优特征来进行划分,默认是2。
    • 如果样本量不大,不需要管这个值。如果样本量数量级非常大,则推荐增大这个值。
  • min_samples_leaf 叶子节点的最小样本数

    • 这个值限制了叶子节点最少的样本数,如果某叶子节点数目小于样本数,则会和兄弟节点一起被剪枝, 默认是1。
    • 叶是决策树的末端节点。 较小的叶子使模型更容易捕捉训练数据中的噪声。
  • min_impurity_split: 节点划分最小不纯度

    • 这个值限制了决策树的增长,如果某节点的不纯度(基于基尼系数,均方差)小于这个阈值,则该节点不再生成子节点。即为叶子节点 。

继续使用 机器学习算法(4)—— 决策树算法 一文中“泰坦尼克号乘客生存预测” 案例

from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier

estimator = RandomForestClassifier()
# 定义超参数的选择列表
param = {"n\_estimators": [120,200,300,500,800,1200], "max\_depth": [5, 8, 15, 25, 30]}
# 使用GridSearchCV进行网格搜索
estimator = GridSearchCV(estimator,param_grid=param,cv=2)
estimator.fit(x_train,y_train)
score = estimator.score(x_test,y_test)

注意:

  • 随机森林的建立过程
  • 树的深度、树的个数等需要进行超参数调优
2.2.4 随机森林案例

随机森林应用案例 —— otto产品分类

2.3 Bagging 小结

​ Bagging + 决策树/线性回归/逻辑回归/深度学习… = bagging集成学习方法

经过上面方式组成的集成学习方法:

  • 均可在原有算法上提高约2%左右的泛化正确率
  • 简单, 方便, 通用

3 Boosting

3.1 Boosting 集成原理

随着学习的积累从弱到强

简而言之:每新加入一个弱学习器,整体能力就会得到提升
代表算法:Adaboost,GBDT,XGBoost,LightGBM

实现过程:

  1. 训练第一个学习器

在这里插入图片描述

  1. 调整数据分布

在这里插入图片描述
3. 训练第二个学习器

在这里插入图片描述
4. 再次调整数据分布

在这里插入图片描述
5. 依次训练学习器,调整数据分布

在这里插入图片描述

3.2 与 Bagging 的区别

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值