Java高并发之设计模式,设计思想,进程和线程 面试

本文介绍了Java中实现高并发的两种策略:生产消费者模式和分而治之思想。在生产消费者模式中,通过BlockingQueue实现生产者线程和消费者线程间的协作,降低依赖并优化系统结构。分而治之思想通过Master-Worker模式和ForkJoin线程池来拆解任务并行执行,提高系统吞吐量。文章还提供了详细代码示例以加深理解。
摘要由CSDN通过智能技术生成

// 取得返回对象

V get() throws InterruptedException, ExecutionException;

// 取得返回对象, 并可以设置超时时间

V get(long timeout, TimeUnit unit)

throws InterruptedException, ExecutionException, TimeoutException;

生产消费者模式

生产者-消费者模式是一个经典的多线程设计模式. 它为多线程间的协作提供了良好的解决方案。

在生产者-消费者模式中,通常由两类线程,即若干个生产者线程和若干个消费者线程。

生产者线程负责提交用户请求,消费者线程则负责具体处理生产者提交的任务。

生产者和消费者之间则通过共享内存缓冲区进行通信, 其结构图如下

在这里插入图片描述

PCData为我们需要处理的元数据模型, 生产者构建PCData, 并放入缓冲队列.

消费者从缓冲队列中获取数据, 并执行计算.

生产者核心代码

while(isRunning) {

Thread.sleep(r.nextInt(SLEEP_TIME));

data = new PCData(count.incrementAndGet);

// 构造任务数据

System.out.println(data + " is put into queue");

if (!queue.offer(data, 2, TimeUnit.SECONDS)) {

// 将数据放入队列缓冲区中

System.out.println("faild to put data : " + data);

}

}

消费者核心代码

while (true) {

PCData data = queue.take();

// 提取任务

if (data != null) {

// 获取数据, 执行计算操作

int re = data.getData() * 10;

System.out.println("after cal, value is : " + re);

Thread.sleep(r.nextInt(SLEEP_TIME));

}

}

生产消费者模式可以有效对数据解耦, 优化系统结构.

降低生产者和消费者线程相互之间的依赖与性能要求.

一般使用BlockingQueue作为数据缓冲队列, 他是通过锁和阻塞来实现数据之间的同步,

如果对缓冲队列有性能要求, 则可以使用基于CAS无锁设计的ConcurrentLinkedQueue.

分而治之

严格来讲, 分而治之不算一种模式, 而是一种思想.

它可以将一个大任务拆解为若干个小任务并行执行, 提高系统吞吐量.

我们主要讲两个场景, Master-Worker模式, ForkJoin线程池.

Master-Worker模式

该模式核心思想是系统由两类进行协助工作: Master进程, Worker进程.

Master负责接收与分配任务, Worker负责处理任务. 当各个Worker处理完成后,

将结果返回给Master进行归纳与总结.

假设一个场景, 需要计算100个任务, 并对结果求和, Master持有10个子进程.

在这里插入图片描述

Master代码

public class MasterDemo {

// 盛装任务的集合

private ConcurrentLinkedQueue workQueue = new ConcurrentLinkedQueue();

// 所有worker

private HashMap<String, Thread> workers = new HashMap<>();

// 每一个worker并行执行任务的结果

private ConcurrentHashMap<String, Object> resultMap = new ConcurrentHashMap<>();

public MasterDemo(WorkerDemo worker, int workerCount) {

// 每个worker对象都需要持有queue的引用, 用于领任务与提交结果

worker.setResultMap(resultMap);

worker.setWorkQueue(workQueue);

for (int i = 0; i < workerCount; i++) {

workers.put("子节点: " + i, new Thread(worker));

}

}

// 提交任务

public void submit(TaskDemo task) {

workQueue.add(task);

}

// 启动所有的子任务

public void execute(){

for (Map.Entry<String, Thread> entry : workers.entrySet()) {

entry.getValue().start();

}

}

// 判断所有的任务是否执行结束

public boolean isComplete() {

for (Map.Entry<String, Thread> entry : workers.entrySet()) {

if (entry.getValue().getState() != Thread.State.TERMINATED) {

return false;

}

}

return true;

}

// 获取最终汇总的结果

public int getResult() {

int result = 0;

for (Map.Entry<String, Object> entry : resultMap.entrySet()) {

result += Integer.parseInt(entry.getValue().toString());

}

return result;

}

}

Worker代码

public class WorkerDemo implements Runnable{

private ConcurrentLinkedQueue workQueue;

private ConcurrentHashMap<String, Object> resultMap;

@Override

public void run() {

while (true) {

TaskDemo input = this.workQueue.poll();

// 所有任务已经执行完毕

if (input == null) {

break;

}

// 模拟对task进行处理, 返回结果

int result = input.getPrice();

this.resultMap.put(input.getId() + “”, result);

System.out.println("任务执行完毕, 当前线程: " + Thread.currentThread().getName());

}

}

public ConcurrentLinkedQueue getWorkQueue() {

return workQueue;

}

public void setWorkQueue(ConcurrentLinkedQueue workQueue) {

this.workQueue = workQueue;

}

public ConcurrentHashMap<String, Object> getResultMap() {

return resultMap;

}

public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {

this.resultMap = resultMap;

}

}

public class TaskDemo {

private int id;

private String name;

private int price;

public int getId() {

return id;

}

public void setId(int id) {

this.id = id;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public int getPrice() {

return price;

}

public void setPrice(int price) {

this.price = price;

}

}

主函数测试

MasterDemo master = new MasterDemo(new WorkerDemo(), 10);

for (int i = 0; i < 100; i++) {

TaskDemo task = new TaskDemo();

task.setId(i);

task.setName(“任务” + i);

task.setPrice(new Random().nextInt(10000));

master.submit(task);

}

master.execute();

while (true) {

if (master.isComplete()) {

System.out.println("执行的结果为: " + master.getResult());

break;

}

}

ForkJoin线程池

该线程池是jdk7之后引入的一个并行执行任务的框架, 其核心思想也是将任务分割为子任务,

有可能子任务还是很大, 还需要进一步拆解, 最终得到足够小的任务.

将分割出来的子任务放入双端队列中, 然后几个启动线程从双端队列中获取任务执行.

子任务执行的结果放到一个队列里, 另起线程从队列中获取数据, 合并结果.

在这里插入图片描述

假设我们的场景需要计算从0到20000000L的累加求和. CountTask继承自RecursiveTask, 可以携带返回值.

每次分解大任务, 简单的将任务划分为100个等规模的小任务, 并使用fork()提交子任务.

在子任务中通过THRESHOLD设置子任务分解的阈值, 如果当前需要求和的总数大于THRESHOLD, 则子任务需要再次分解,如果子任务可以直接执行, 则进行求和操作, 返回结果. 最终等待所有的子任务执行完毕, 对所有结果求和.

public class CountTask extends RecursiveTask{

// 任务分解的阈值

private static final int THRESHOLD = 10000;

private long start;

private long end;

public CountTask(long start, long end) {

this.start = start;

this.end = end;

}

public Long compute() {

long sum = 0;

boolean canCompute = (end - start) < THRESHOLD;

if (canCompute) {

for (long i = start; i <= end; i++) {

sum += i;

}

} else {

// 分成100个小任务

long step = (start + end) / 100;

ArrayList subTasks = new ArrayList();

long pos = start;

for (int i = 0; i < 100; i++) {

long lastOne = pos + step;

if (lastOne > end) {

lastOne = end;

}

CountTask subTask = new CountTask(pos, lastOne);

pos += step + 1;

// 将子任务推向线程池

subTasks.add(subTask);

subTask.fork();

}

for (CountTask task : subTasks) {

// 对结果进行join

sum += task.join();

}

}

return sum;

}

public static void main(String[] args) throws ExecutionException, InterruptedException {

ForkJoinPool pool = new ForkJoinPool();

// 累加求和 0 -> 20000000L

CountTask task = new CountTask(0, 20000000L);

ForkJoinTask result = pool.submit(task);

System.out.println("sum result : " + result.get());

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
img

总结

在清楚了各个大厂的面试重点之后,就能很好的提高你刷题以及面试准备的效率,接下来小编也为大家准备了最新的互联网大厂资料。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!**

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-QjdWH7Y2-1712795543479)]

总结

在清楚了各个大厂的面试重点之后,就能很好的提高你刷题以及面试准备的效率,接下来小编也为大家准备了最新的互联网大厂资料。

[外链图片转存中…(img-2t4a3Bow-1712795543479)]

[外链图片转存中…(img-jpX9Szik-1712795543480)]

[外链图片转存中…(img-j4lpr823-1712795543480)]

[外链图片转存中…(img-m9RxZGjq-1712795543480)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-cm0gghKl-1712795543481)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值