先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
正文
- 针对目前各个业务组内维护的Java jni 模型推理的情况,如果需要使用新硬件进行模型训练,需要支持至少CUDA11的对应的TF版本(2.4以上);
- 模型训练侧代码, 目前版本为TF1.12-TF1.14之间;
基于这样的背景, 我们完成机器学习平台TF2.6版本的全流程支持,从样本读写、模型训练、模型线上推理,全面支持TF2.6,具体的事项包括:
- 机器学习平台支持TF2.6以及Nvidia TF1.15两套框架来适配Cuda11;
- 考虑到单A100性能极强,在大部分业务的模型训练中无法充分发挥其性能。因而,我们选择将一张A100切分成更小的算力单元,需要详细了解的可以关注nvidia mig 介绍,可以大大提升平台整体的吞吐率;
- mig的好处,能够大大地提升平台整体的吞吐率,但是A100经过虚拟化之后,显卡实例的调度以及相关的监控也是平台比较复杂的工作;
- 离线训练升级到较高版本之后,推理框架也需要升级,保证兼容TF1.x与TF2.x的框架产生的模型;
通过完成上述事项, 在完成A100 MIG能力的支持之后, 整体从训练速度、推理改造后的数据来看,大大超出预期,离线任务我们使用新显卡1/3的算力可以在常规的任务老版本算力上平均有40%以上的训练速度提升,最高有170%以上的提升,而线上推理性能,通过适配2.6的TensorFlow版本,在保证完全兼容TF1.X的线上版本的同时,获得20%以上的推理性能提升。在A100切分实例上,我们目前提供2g-10gb、3g-20gb、4g-40gb三类显卡实例,覆盖平台日常的任务类型,其他指标如稳定性均大大超过老版本算力。
大规模图神经网络
随着从传统音乐工具软件到音乐内容社区的转变,云音乐依托音乐主站业务,衍生大量创新业务,如直播、播客、K歌等。创新业务既是机遇也为推荐算法同学带来了挑战:用户在创新业务中的行为稀疏,冷启动现象明显;即使是老业务也面临着如下问题:
- 如何为新用户有效分发内容;
- 将新内容有效分发给用户;
我们基于飞桨图学习框架PGL,使用全站用户行为