网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+
目录
方差分析概述
引例
对影响农作物产量的各种因素进行定量的对比研究,并在此基础上制定最佳的种植组合方案。影响农作物产量的因素有品种、施肥量、地域特征等。找到众多影响因素中重要的和关键的影响因素非常重要;进一步,在掌握了关键因素,如品种、施肥量等以后,还 需要对不同的品种、不同的施肥量等进行对比分析,研究究竟哪个品种的产量高,施肥量究竟多少最合适,哪个品种与哪种施肥水平搭配最优等。
上述问题的研究就可以通过方差分析实现。在方差分析中,上述问题中的农作物产量称为观测因素(观测变量);品种、施肥量等影响因素称为控制因素(控制变量);将控制变量的不同类别(如 甲品种、乙品种、丙品种;10千克化肥、20千克化肥、30千克化 肥)称为控制变量的不同水平。
方差分析的基本假设前提
- 观测变量各总体应服从正态分布
- 观测变量各总体的方差应相同
基于上述两个基本假设,方差分析对各总体分布是否有显著差异的推断就转化成对各总体均值是否存在显著差异的推断。
方差分析研究的问题
方差分析(Analysis of Variance,ANOVA)是假设检验的一种延续与扩展,主要用来对多个总体均值(三组或三组以上均值)是否相等作出假设检验。
从观测变量的方差分解入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量,对观测变量有显著影响的各个控制变量其不同水平以及各水平的交互搭配是如何影响观测变量的。 它的零假设(原假设)和备择假设分别为:
观测变量值的两类影响因素
观测变量值的变化受两类因素的影响
- 控制因素(控制变量)不同水平所产生的影响
- 随机因素(随机变量)所产生的影响
若观测变量值在某控制变量的各个水平中出现了明显波动,则认为该控制变量是影响观测变量的主要因素;若观测变量值在某控制变量的各个水平中没有出现明显波动,则认为该控制变量没有对观测变量产生重要影响,观测变量的数据波动是由抽样误差造成的。
多因素方差分析原理
多因素方差分析
- 研究两个及两个以上控制变量是否对观测变量产生显著影响
- 不仅能够分析多个因素对观测变量的独立影响,更能够分析多个 控制因素的交互作用能否对观测变量的分布产生显著影响
- SST=SSA+SSB+SSAB+SSE (以两因素方差分析为例)
- 比较观测变量总离差平方和各部分的比例
- 若SSA所占比例较大,则说明控制变量A是引起观测变量变动的主要因素之一,观测变量的变动可 以部分地由控制变量A来解释;反之,不能
- 对SSB和SSAB同理
多因素方差分析的基本步骤
1.提出原假设
原假设H0是:各控制变量不同水平与各交互作用水平下观 测变量各总体的均值无显著差异。即,控制变量和它们的交互作用没有对观测变量产生显著影响。
2.选择检验统计量(F统计量)
在多因素方差分析中,控制变量可以进一步划分为固定效应和随机效应两种类型。
- 固定效应指控制变量的各个水平是可以严格控制的
- 随机效应指控制变量的各个水平无法严格控制
如果方差分析的目的仅局限于对比已有控制变量不同水平对观测变量的影响,不涉及对未观测到水平的影响,则可视其为固 定效应。通常关注的是控制变量A的F检验统计量FA,控制变量B 的F检验统计量FB,A与B的交互作用的F检验统计量FAB
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**