2024年最全Python大数据-对淘宝用户的行为数据分析,分享一点面试小经验

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

1、不同时间下PV、UV的流量变化情况


1)每天的PV、UV变化情况

  • 首先计算一下总流量

总PV值=数据条数

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import os

data.shape[0]

总流量为12256906,在计算一下日平均流量、日平均独立访客数

##日PV

pv_daily = data.groupby([‘date’])[‘user_id’].count().reset_index().rename(columns={‘user_id’:‘pv_daily’})

pv_daily.head()

  • 日平均独立访客数与日平均流量的区别在于要进行去重

##日UV

uv_daily = data.groupby([‘date’])[‘user_id’].apply(lambda x:x.drop_duplicates().count()).reset_index().rename(columns={‘user_id’:‘uv_daily’})

uv_daily.head()

s=uv_daily[‘uv_daily’]

pv_daily[‘uv_daily’]=s

pv_daily

将两表合并

plt.figure(figsize=(40,20),dpi=80)

font={

“family”:“kaiti”,

“size”:‘30’

}

plt.rc(“font”,**font)

plt.subplot(211)#在第一个位置日平均流量图

plt.plot(pv_daily[‘date’],pv_daily[‘pv_daily’],‘co-’)

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(‘%m/%d’))

plt.gca().xaxis.set_major_locator(mdates.DayLocator()) # 按月显示,按日显示的话,将MonthLocator()改成DayLocator()

plt.gcf().autofmt_xdate()

ax=plt.gca()

ax.spines[“top”].set_color(“w”)

ax.spines[“bottom”].set_color(“r”)

ax.spines[“left”].set_color(“r”)

ax.spines[“right”].set_color(“w”)

plt.gcf().autofmt_xdate()

#设置X轴标签

plt.xlabel(“时间”)

#设置y轴标签

plt.ylabel(“日平均流量统计图”)

plt.title(‘日平均流量’)

plt.figure(figsize=(40,20), dpi=80)

plt.subplot(212)#第二个位置绘制日平均独立访客数

plt.plot(pv_daily[‘date’],pv_daily[‘uv_daily’],‘yo-’)

plt.gca().xaxis.set_major_formatter(mdates.DateFormatter(‘%m/%d’))

plt.gca().xaxis.set_major_locator(mdates.DayLocator())

ax=plt.gca()

ax.spines[“top”].set_color(“w”)

ax.spines[“bottom”].set_color(“r”)

ax.spines[“left”].set_color(“r”)

ax.spines[“right”].set_color(“w”)

plt.title(‘日独立访问客流量’)

plt.gcf().autofmt_xdate()

#设置X轴标签

plt.xlabel(“时间”)

#设置y轴标签

plt.ylabel(“日独立访客量统计图”)

plt.show()

绘制子图,将日平均流量和独立访问客数放在一起进行对比分析:

  • 可以发现在双十二当天是流量和独立访客数的高峰,在平常波动不大

每天时刻数据

每天的时刻数据

pv_daily_hour = data.groupby([‘hour’])[‘user_id’].count().reset_index().rename(columns={‘user_id’:‘pv’})

uv_daily_hour = data.groupby([‘hour’])[‘user_id’].apply(lambda x:x.drop_duplicates().count()).reset_index().rename(columns={‘user_id’:‘uv’})

pv_daily_hour.head()

uv_daily_hour.head()

plt.figure(figsize=(15,18),dpi=80)

plt.subplot(211)

plt.plot(pv_daily_hour[‘hour’],pv_daily_hour[‘pv’],‘bo-’)

plt.title(“每小时PV”)

plt.savefig(“每小时PV.png”)

plt.xticks(np.arange(0, 24, step=1))

plt.xlim(data.index.values[0])

plt.figure(figsize=(15,18),dpi=80)

plt.subplot(212)

plt.plot(uv_daily_hour[‘hour’],uv_daily_hour[‘uv’],‘yo-’)

plt.title(“每小时UV”)

plt.savefig(“每小时UV.png”)

plt.xticks(np.arange(0, 24, step=1))

plt.xlim(data.index.values[0])

plt.show()

  • 从早上5:00-10:00,18:00-21:00这两个时间段pv有较明显上升;uv从早上6:00-10:00有较明显增加,而后到21点uv保持稳定数量,然后开始下降;pv、uv变化符合大众工作作息时间,侧面证明数据是真是有效的。

2、不同购物行为在不同时间维度下的变化情况


plt.figure(figsize=(10, 4))

sns.lineplot(data=d_pv_h, lw=3)

plt.show()

plt.figure(figsize=(10, 4))

sns.lineplot(data=d_pv_h.iloc[:, 1:], lw=3)

plt.show()

虽然大体上各波动趋势相同,但是加购物车数远高于收藏数。

每个UV的平均访问深度=总流量/独立访客数

round(data[‘user_id’].shape[0]/data[‘user_id’].nunique(),2)

##=1225.69

每个UV的日平均访问深度

round(data[‘user_id’].shape[0]/data[‘user_id’].nunique()/data[‘date’].nunique(),2)

##=39.54

分析期间,每个UV的平均PV量是1225.69,每个UV的平均访问深度是39.54

3 、用户转化行为漏斗模型分析


计算每一个行为环节用户的访问量

view = data.groupby([‘behavior_type’])[‘user_id’].count().reset_index().rename(columns={‘user_id’:‘pv’})

view.head

其中:

beihavior_type-
1点击
2收藏
3加购物车
4支付

#计算各个环节的流失率

print(“点击->加购物车流失率是:%d” % round((view[‘pv’][0]-view[‘pv’][2])*100/view[‘pv’][0],4) + ‘%’)

print(‘点击->收藏流失率是:%d’ % round((view[‘pv’][0]-view[‘pv’][1])*100/view[‘pv’][0],4) + ‘%’)

print(‘加购物车->支付的流失率是:%d’ % round((view[‘pv’][2]-view[‘pv’][3])*100/view[‘pv’][2],4) + ‘%’)

print(‘收藏->支付的流失率是:%d’ % round((view[‘pv’][1]-view[‘pv’][3])*100/view[‘pv’][1],4) + ‘%’)

from pyecharts.charts import Funnel

attr = [‘点击’,‘收藏’,‘加购物车’,‘支付’]

数据支持[(属性,数量)]

image_data = [(attr[i],int(view[‘pv’][i])) for i in range(len(attr))]

print(image_data)

funnel = (Funnel().add(series_name=‘用户行为漏斗’, data_pair=image_data))

funnel.render_notebook()

用户产生点击后可能进行的操作分别为:点击->加购物车、点击->收藏、加购物车->支付、收藏->支付,可以明显的看出用户的流失率比较大,根据用户购买途径计算出各个阶段用户流失率:

  • 从浏览——加入购物车/收藏——付款的转化率较低;可以看出浏览到加入购物车或者收藏这一环节的流失率较大,可能由于产品不符合消费者需求或者详情页面不友好等需要对其中原因进一步挖掘分析,查看独立访客情况。

独立访客漏斗模型计算:

view = data.groupby([‘behavior_type’])[‘user_id’].apply(lambda x:x.drop_duplicates().count()).reset_index().rename(columns={‘user_id’:‘pv’})

view

可以看到相应的转化率还是比较高的!

##计算每天的购买数量

df = data[data[‘date’]!=‘2014-12-12’]

date_buy = df[df[‘behavior_type’]==4].groupby([‘date’])[‘item_id’].count().reset_index()

date_buy

##计算每小时的购买数量

hour_buy = df[df[‘behavior_type’]==4].groupby([‘hour’])[‘item_id’].count().reset_index()

hour_buy

plt.figure(figsize=(20,5))

plt.plot(date_buy[‘date’],date_buy[‘item_id’])

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

5qE5bCP546L,size_5,color_FFFFFF,t_70,g_se,x_16)

plt.figure(figsize=(20,5))

plt.plot(date_buy[‘date’],date_buy[‘item_id’])

[外链图片转存中…(img-kDHaxoqU-1715633663767)]
[外链图片转存中…(img-YGYgXAZK-1715633663767)]
[外链图片转存中…(img-4gLoXFg7-1715633663767)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 29
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值