2024年大数据最全12(2),2024年最新大数据开发开发全套学习

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 第二个代码片段讲解:
    给定列表a = [1,2,3,4,5,6,7,8,9,10],我们需求是倒序取出列表中所有偶数——这就用到了逆序切片!
a = [1,2,3,4,5,6,7,8,9,10]

print(a[::-2])			# 简写了,起始位置和结束位置两个地方没写,则为整个列表


需求完美实现:
在这里插入图片描述

总结升华:

L[m:n]表示:从索引m开始直到索引n(不包含n)取数据;
L[m:n:p]表示:从索引m开始直到索引n(不包含n)取数据,每p个取一个。

  1. m、n、p、可以为负数:
      ①p>0 从首部往尾部方向取,p<0是从尾部向首部取。
      ②m、n大于0表示索引值。
      ③m、n小于0表示倒数第几个。
    L[-5:-2] 表示倒数第5到倒数第2元素(不包含倒数第2个元素)从首到尾的顺序取。
    L[-2:-5:-2] 表示倒数第2到倒数第5元素(不包含倒数第5个元素)从尾到首的顺序取,每2个取一个。
    一般流程:m、n如果为负数先转为正数然后根据p的方向取值(初学可能不是很理解这句话,可以用多了再来揣度)。
  2. m、n、p可以缺省:L[::]
    m缺省为p表示的方向的首元素,n缺省为p表示的方向的尾元素的后一个,p缺省表示1

L = [‘Google’, ‘Baidu’, ‘Taobao’, ‘edu360’, ‘xiaoniu’]
在这里插入图片描述

1.2 第二小节课 之 列表中的骚方法操作

①list.append(obj)
  • 在列表末尾添加新的对象 列表专属
a = [1,2,3]
a.append('s')

print(a)		# 输出为:[1, 2, 3, 's']

②list.insert(x,y)
  • 自定义位置添加元素,将元素插入到指定的索引 加入单个值!!!(参数含义:第一个是所添加的下标指定位置,第二个是需要添加的元素)
a = [1,2,3]
a.insert(1,'new\_num')		# 
print(a)		# 输出为:[1, 'new\_num', 2, 3]

③list.extend(sep)
  • 在列表末尾一次性追加另一个序列(字符串,列表,元组)中的多个值(用新列表扩展原来的列表)
a = [1,2,3]
a.extend('abc')
print(a)		# 输出为:[1, 2, 3, 'a', 'b', 'c']

④list.pop()
  • 没有传参数的情况下会删除列表的最后一个元素,如果带了参数的话就删除指定索引位置的元素
# 未加参数——删除最后一个元素!
a = [1,2,3]
a.pop()
print(a)		# 输出为[1,2]

加参数——删除指定索引位置的元素!
b = [1,2,3]
a.pop[1]
print(a)        # 输出为[1,3]

⑤list.remove()
  • 删除指定元素,但是在有多个相同项的情况下只删除第一个
a = [1,2,3,4,1,1,1]
a.remove(1)
print(a)		# 输出为[2,3,4,1,1,1]

⑥list.clear()
  • 清空列表,删除列表里所有的值,括号内不需要带参数
a = [1,2,3,4,1,1,1]
a.clear()
print(a)		# 输出为[]

⑦list.count(obj)
  • 统计某个元素在列表中出现的次数,计数(可以赋值可以print)
a = [1,2,3,4,1,1,1]
num = a.count(1)
print(num)			# 输出为 4

⑧list.index(x,y)
  • 第一个参数是要查找的值,第二个参数是查找开始的下标位置。每次查找只会显示查找到的第一个值的下标。不加第二个参数的话默认从下标0开始,没有查找到的时候会报错 (可以赋值可以print)
a = [1,2,3,4,1,1,1]

index1 = a.index(1)
index2 = a.index(1,2)

print(index1)		# 输出为 0
print(index2)		# 输出为 4

⑨join()
  • 方法用于将序列中的元素以指定的字符连接生成一个新的字符串。使用方法:str.join(sequence),sequence为要连接的元素序列。返回通过指定字符连接序列中元素后生成的新字符串。
a = ['a', 'b', 'c']

end = "-".join(a)
print(end)		# 输出为a-b-c

⑩list.reverse()
  • 反向列表中元素
⑩①list.sort([func])
  • 对原列表进行排序
⑩②列表操作中还有深浅复制的方法
拓展:列表排序的方法!
①sort() --->对列表里的数值从小到大排序,只能是数字,如果列表里有字符串的话那么需要在括号内加入:key=str   如a.sort(key=str) 。字符串的排序根据于ASCII的字母排序。
上代码:
a = ['a', 'd', 'f', 'b']
a.sort(key=str)
print(a)		# 输出为:['a', 'b', 'd', 'f']


拓展:使用sort()方法对列表里的数值从大到小排序;如果列表里有字符串的话加入参数key=str,如a.sort(key=str,reverse=True)。
上代码:(列表含有字符串)
a = ['a', 'g', 'b', 'c']
a.sort(key=str,reverse=True)
print(a)		# 输出为:['g', 'c', 'b', 'a']

上代码:(列表元素都是数字)
a = [1,9,3,7]
a.sort(reverse=True)
print(a)		# 输出为:[9,7,3,1]


②reverse() --->对列表里的数值从大到小反序,只能是数字。
上代码:
a = [1, 4, 3, 8]
a.reverse()
print(a)		# 输出为: [8,3,4,1]


一些在项目中常用的列表小操作!

(1)找出列表中出现次数最多的元素

如果有一天,同学们在工作,Boss突然抛出来一个需求:**在python程序中如何找到列表中出现次数最多的元素!**难道你要使用循环啥的一步步瞎搞?效率低B格也不高。这里为师教你们一种简单易上手B格高的方法——使用collections模块中的Counter类,调用Counter类中的most_common()函数来实现!
直接上代码:

from collections import Counter
words = [
    'look', 'into', 'my', 'AAA', 'look', 'into', 'my', 'AAA',
    'the', 'AAA', 'the', 'eyes', 'not', 'BBB', 'the', 'AAA',
    "don't", 'BBB', 'around', 'the', 'AAA', 'look', 'into',
    'BBB', 'AAA', 'BBB', 'under'
]

word_counts = Counter(words)
print('统计所有元素出现次数:',word_counts)
top_three = word_counts.most_common(3)
print('统计出现次数最多的三个元素:',top_three)


输出为:
统计所有元素出现次数: Counter({'AAA': 6, 'the': 4, 'BBB': 4, 'look': 3, 'into': 3, 'my': 2, 'eyes': 1, 'not': 1, "don't": 1, 'around': 1, 'under': 1})
统计出现次数最多的三个元素: [('AAA', 6), ('the', 4), ('BBB', 4)]

(2)排序类定义的实例

项目背景:如果我们在一个项目中,一个类定义的实例有很多个,而我们的需求是将这些实例排序该怎么做呢?

使用内置函数sorted()可以接收一个用来传递可调用(callable)对象的参数key,而这个可调用对象会返回待排序对象中的某些值,sorted()函数则利用这些值来比较对象。

假如在程序中存在多个User对象的实例,如果想通过属性user_id来对这些实例进行排序,可以提供一个可调用对象,它将User实例作为输入,然后返回user_id。下面代码演示排序上述User对象实例的过程:

class User:
    def \_\_init\_\_(self, user_id):
        self.user_id = user_id

    def \_\_repr\_\_(self):
        return 'User({})'.format(self.user_id)

# 原来的排序
users = [User(91), User(17), User(18)]
print(users)

# 根据user\_id排序——两种方法
# ①使用lambda表达式:
print(sorted(users, key=lambda u: u.user_id))

# ②使用内置函数operator.attrgetter()进行处理:
from operator import attrgetter
print(sorted(users, key=attrgetter('user\_id')))


在这里插入图片描述

(3)命名切片(高阶用法)

项目问题背景:
在python程序中,有时会发现编写的代码由于过度的使用硬编码的切片索引(就像上面第二小节课讲的那样!),而使得我们的项目代码变得杂乱无章而无法阅读,此时就需要清理它们。同时过度的使用硬编码的索引值,也会降低代码的可读性和可维护性。

解决方法:
在python程序中,使用函数slice()可以实现切片对象,能够在切片操作函数中实现参数传递功能,可以被用在任何允许进行切片操作的地方。

使用函数slice()的语法格式:
class slice(stop)
class slice(start, stop, step)

start:起始位置;
stop:结束位置;
step:间距。

上代码讲解:

items = [0, 1, 2, 3, 4, 5, 6]

a = slice(2,4)          # 定义一个slice对象实例a

print(items[2:4])       # 使用常用的切片取列表值
print(items[a])         # 使用slice对象实例a取列表值

items[a] = [10, 11]
print(items)

print(a.start)          # 分别通过属性a.start,a.stop,a.step获取该slice对象的信息
print(a.stop)
print(a.step)

s = 'verygoodman'
# 使用indices(size)函数将切片映射到特定大小的序列上,这将会返回一个(start,stop,step)元组,
# 所有的值都已经正好限制在边界以内,这样当进行索引操作时可以避免出现IndexError异常。
print(a.indices(len(s)))   
print(\*a.indices(len(s)))		# 分解元组 
for i in range(\*a.indices(len(s))):
    print(s[i])

在这里插入图片描述

深入讲解——使用indices(size)函数的好处,以及上述注释中写的为何使用此函数当进行索引操作时可以避免出现IndexError异常!
直接上代码讲解:

a = slice(2,4)          # 定义一个slice对象实例a

s = 'ver'				# 此时序列s
# 使用indices(size)函数将切片映射到特定大小的序列上,这将会返回一个(start,stop,step)元组,
# 所有的值都已经正好限制在边界以内,这样当进行索引操作时可以避免出现IndexError异常。
print(a.indices(len(s)))
print(\*a.indices(len(s)))		# 分解元组 
for i in range(\*a.indices(len(s))):
    print(s[i])

一节课让你彻底搞懂python中的单星号(*)和双星号(**)的区别及项目实际用法——给我学!

观察运行结果会发现:我们虽然定义的slice对象实例的切片范围是2-4,但是由于映射到的序列整体范围只有0-3(左闭右开),因为我们使用了indices(size)函数,它会将切片范围限制在这个映射的序列范围边界以内:2-3,这样虽然我们定义的slice对象实例范围超出了此序列s的范围,但是因为indices(size)函数的使用并不会报错,而是类似于动态的自适应变化!
在这里插入图片描述

(4)生成list相关函数(重点!!!!)

一、列表生成式

列表推导式(List Comprehension)是一种简化代码的优美方法。官方文档——列表推导式提供了一种创建列表的简洁方法。 使用列表推导式能够非常简洁的构造一个新列表,只需要用一个简洁的表达式即可对得到的元素进行转换变形。

# 使用Python列表推导式的语法格式:
variable = [out\_exp\_res for out\_exp in input\_list if out\_exp == 2]

out_exp_res:列表生成元素表达式,可以是有返回值的函数;
for out_exp in input_list:迭代input_list,将out_exp传入out_exp_res表达式中;
if out_exp == 2:判断根据条件可以过滤哪些值。

先来讲讲—range函数list序列迭代对象
  • Python3 range() 函数返回的是一个可迭代对象(类型是对象),而不是列表类型, 所以打印的时候不会打印列表。
  • Python3 list() 函数是对象迭代器,可以把range()返回的可迭代对象转为一个列表,返回的变量类型为列表。

①range 语法:
range(stop)
range(start, stop[, step])
②参数说明:
  start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0, 5);
  end: 计数到 end 结束,但不包括 end。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
  step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)

# -\*- coding: utf-8 -\*-
"""
\_\_author\_\_ = 小小明-代码实体
"""
# coding=utf-8
print(list(range(10)))  # 产生一个0-9的序列
print(list(range(3, 10)))  # 产生一个3-9的序列
print(list(range(0, 10, 3)))  # 产生从0开始,按3递增,最大值为9的序列
print(list(range(10, -1, -1)))  # 产生从10开始,最小值为0的递减序列

在这里插入图片描述

第一个:基本使用
  • 我先来实战讲解一下,然后下面出两道很简单的小题目:
#coding=utf-8

print([x \* x for x in range(1, 11)])
print([x \* x for x in range(1, 11) if x % 2 == 0])

#还可以使用两层循环,可以生成全排列:
print([m + n for m in 'ABC' for n in 'XYZ'])
print([str(x)+str(y) for x in range(1,6) for y in range(11,16)])

#for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
d = {'x': 'A', 'y': 'B', 'z': 'C' }
print([k + '=' + v for k, v in d.items()])

在这里插入图片描述

第一题:创建一个包含从1到10的平方的列表。

惯性思维——常规方法解决:

list_end = []
for x in range(10):
    list_end.append(x\*\*2)
print(list_end)

借由列表推导式——一行代码解决:

list_end1 = [x\*\*2 for x in range(10)]
print(list_end1)

二者输出都为:
在这里插入图片描述

第二题:输出30以内能够整除3的整数。

传统方法实现:

nums = []
for x in range(30):
    if x % 3 == 0:
        nums.append(x)
print(nums)

使用列表推导式一行代码解决:

nums1 = [x for x in range(30) if x % 3 == 0]
print(nums1)

二者输出都为:
在这里插入图片描述

第二个:升级版使用——使用列表生成式的同时使用函数处理

需求:首先获取30以内能够整除3的整数,然后一次输出所获得整数的平方。

def squared(x):
    return x\*\*2

end = [squared(x) for x in range(30) if x % 3 == 0]
print(end)

在这里插入图片描述

第三个:高级版使用——删选列表中特定元素的高级操作

在python程序中,有时候筛选列表中的某些特定元素时,筛选标准无法简单的表示在列表推导式或生成器表达式中,例如当筛选过程涉及异常处理或者其他一些复杂的细节时。此时可以考虑将处理筛选功能的代码放到单独的功能函数中,然后使用内建的filter()函数进行处理。

需求:筛选指定列表中的所有整数元素!

values = ['1', '2', '-3', '-', '4', 'N/A', '5']
def is\_int(val):
    try:
        x = int(val)
        return True
    except ValueError:
        return False

# 注意:因为使用函数filter()创建了一个迭代器,所以想要得到一个列表形式的结果,必须在filter()前面加上list()函数。
isvals = list(filter(is_int, values))
print(isvals)

在这里插入图片描述

二、列表生成器
  • 通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
  • 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
  • 只要把一个列表生成式的[]改成(),就创建了一个generator:
    g = (x * x for x in range(10))
  • generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
# -\*- coding: utf-8 -\*-
"""
\_\_author\_\_ = 小小明-代码实体
"""
for x in (x \* x for x in range(1, 11)):
    print(x, end=" ")
print()
for x in (x \* x for x in range(1, 11) if x % 2 == 0):
    print(x, end=" ")

在这里插入图片描述

三、函数列表生成器
  • 如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
    1, 1, 2, 3, 5, 8, 13, 21, 34, …
  • 斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
# -\*- coding: utf-8 -\*-
"""
\_\_author\_\_ = 小小明-代码实体
"""
def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1

  • 上面的函数可以输出斐波那契数列的前N个数:
>>> fib(6)
1
1
2
3
5
8


![img](https://img-blog.csdnimg.cn/img_convert/7b87a6e2ea6dc3f2a572fd74a282e204.png)
![img](https://img-blog.csdnimg.cn/img_convert/6e58418cb0522db3bb1d65da259291ab.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

* 斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:



-*- coding: utf-8 -*-

“”"
__author__ = 小小明-代码实体
“”"
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1


* 上面的函数可以输出斐波那契数列的前N个数:



fib(6)
1
1
2
3
5
8

[外链图片转存中…(img-oDU26Rmq-1715238949919)]
[外链图片转存中…(img-rZfLBrWH-1715238949919)]

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值