PyCharm配置Anaconda远程解释器_pycharm配置远程服务器anaconda

2.点击工具->部署->上传到远程服务器

3.可以前往服务器文件夹里面看看是否上传

4.以text.py为例, 在编译器端运行该文件

import findspark
findspark.init()

from pyspark import SparkConf, SparkContext

if __name__=='__main__':
    conf=SparkConf().setAppName("test").setMaster("local[*]")
    sc=SparkContext(conf=conf)
    rdd=sc.parallelize([1,2,3,4,5,6,7])

    def add(data):
        return data*100

    print(rdd.map(add).collect())
    print( rdd.map(lambda data:data*10).collect())

运行结果如下

报错

1. 错误1:JAVA_HOME is not set

原因:没有设置java环境变量

编辑该文件配置

添加java环境变量,地址为远程主机的java地址

2.错误2:WARN NativeCodeLoader: Unable to load native-hadoop library for your platform… using builtin-java classes where applicable

原因:无法使用hadoop库

在环境变量中加上spark就可以了

3.错误3: WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform… using builtin-java classes where applicable

在添加spark环境变量后依然报错,但是这个警告通常不会影响代码的运行,因为PyCharm会使用内置的Java类来处理Hadoop相关的功能。如果没有使用Hadoop相关的功能,您可以忽略这个警告。

想要解决的话,在环境遍历中加上Hadoop即可

4.错误4:py4j.protocol.Py4JError: org.apache.spark.api.python.PythonUtils.isEncryptionEnabled does not exist in the JVM

在代码头部加上两行代码即可

#添加此代码
import findspark
findspark.init()

添加后会提示缺少findspark模块,因为Linux环境下没有安装这个模块,可以使用编译器远程安装到Linux主机上。

5.错误5:java.net.ConnectException: 拒绝连接

原因:没有打开hadoop集群

打开主机端的hadoop集群就可以解决。

(pyspark) root@master:~# start-all.sh

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-wxll9566-1712857470167)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值