RocketMQ与Kafka架构深度对比_kafka与rocketmq多方面剖析

目录

一、系统设计与组件构成

在这里插入图片描述

1.1 RocketMQ
  • RocketMQ的系统设计更偏向于队列模型,提供了丰富的消息队列语义,如顺序消息、事务消息和定时消息等。
  • 它主要由NameServer、Broker、Producer和Consumer组成。NameServer负责服务注册与发现,Broker负责存储消息,Producer和Consumer分别负责发送和消费消息。
  • 此外,RocketMQ还支持Filter Server组件,用于支持消息过滤功能。这种设计使得RocketMQ在处理复杂业务逻辑时更加灵活。

在这里插入图片描述

1.2 Kafka
  • 相比之下,Kafka的系统设计更偏向于日志模型,强调数据的顺序性和持久性。
  • 它主要由Producer、Consumer、Broker和ZooKeeper(或KRaft)组成。Producer和Consumer分别负责发送和消费消息,Broker负责存储消息,ZooKeeper(或KRaft)负责协调管理。
  • Kafka的Broker是无状态的,可以独立处理请求,并通过ZooKeeper(或KRaft)进行协调管理。这种设计使得Kafka在处理高吞吐量日志数据时更加高效。

二、数据流向与扩展性

2.1 RocketMQ
  • 在RocketMQ中,数据从Producer发送到Broker,Consumer从Broker拉取数据进行消费。
  • RocketMQ支持消息的Tag过滤和SQL过滤,可以在Broker端进行消息过滤。
  • 此外,RocketMQ还支持事务消息和顺序消息,可以确保数据的强一致性和有序性。
  • 在扩展性方面,RocketMQ支持Broker的横向扩展,通过增加Broker节点来提高系统的吞吐量和可用性。
  • 同时,RocketMQ还支持Topic和Queue的灵活配置,可以根据业务需求进行动态调整。
    在这里插入图片描述
    在这里插入图片描述
2.2 Kafka
  • 在Kafka中,数据从Producer发送到Broker的特定Partition,Consumer从Broker的Partition拉取数据进行消费。
  • Kafka支持按照Key进行消息分区,确保相同Key的消息发送到同一个Partition。
  • 在扩展性方面,Kafka的Broker是无状态的,可以方便地进行横向扩展,提高系统的吞吐量和可用性。
  • 同时,Kafka支持Partition的动态调整,可以通过增加Partition数量来提高系统的并行处理能力。

三、容错性与一致性

3.1 RocketMQ
  • RocketMQ采用主从复制机制来提高容错性。当Master出现故障时,Slave可以自动升级为Master继续提供服务。
  • 同时支持Dledger多副本机制,进一步提高系统的容错性。
  • 在一致性方面,RocketMQ通过主从复制和顺序消息机制保证数据的一致性和有序性。
  • 此外,RocketMQ还支持消息的幂等性处理,避免重复消费导致的数据不一致问题。
3.1 Kafka
  • Kafka则通过ISR机制保证数据的可靠性和一致性。当Leader出现故障时,Follower可以通过选举成为新的Leader继续提供服务。
  • Kafka还支持多副本存储和Min.ISR配置,确保数据的可靠性和容错性。
  • 在一致性方面,Kafka通过ISR机制和分区顺序性保证数据的一致性和有序性。
  • 同时支持Exactly-Once语义,确保分布式环境下的消息幂等性。
  • 此外,Kafka还通过日志压缩功能减少存储空间占用并提高查询效率。

四、总结与展望

通过对RocketMQ与Kafka在架构设计、组件构成、数据流向、扩展性、容错性和一致性等方面的深入对比分析,我们可以发现这两款消息中间件各有千秋。RocketMQ更适合需要丰富队列语义和灵活消费模式的场景;而Kafka则更适合强调数据顺序性、持久性和高吞吐量的日志处理场景。在实际应用中,我们需要根据具体业务需求和系统特点进行选择和配置。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

、源码讲义、实战项目、讲解视频,并且后续会持续更新**

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-fUKvaciY-1712860067270)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值