Python获取股票数据并绘制相应K线图,看这个就够了!_python绘制2024上证50数据收盘价和均线图

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

import tushare as ts
import warnings

warnings.simplefilter(‘ignore’)
token = ‘XXXXXXXXXXXX’ # 以自己的token为例
pro = ts.pro_api(token)

def get_Plate(stock_code):
df = pro.ths_daily(ts_code=stock_code, start_date=‘20200101’, end_date=‘20200331’)
# df = pd.DataFrame(df)
# 选择时间段2020年初爆发疫情最近3个月

csv_name = '医疗器械概念\_pr.csv'
df.to_csv(csv_name)

print("医疗器械概念板块 + ':\n', df)

if name == ‘__main__’:
get_Plate(‘885539.TI’) # 医疗器械概念板块


![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626170325161.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)


#### 获取股票数据(代码部分)


在python中进行数据获取(以迈瑞医疗2020年1月1号至2020年3月31号为例)



import tushare as ts
import warnings

warnings.simplefilter(‘ignore’)
token = ‘XXXXXXXXXXXX’ # 以自己的token为例
pro = ts.pro_api(token)

def get_Stock(stock_code):

获取这类股票的日线

df = pro.daily(ts_code=stock_code, start_date='20200101', end_date='20200331') 
# 选择时间段2020年初爆发疫情最近3个月
stock_name = stock_code[:6]
df.to_csv(stock_name + '.csv')
print(stock_name + ':\n', df)

if name == ‘__main__’:
get_Stock(‘300760.SZ’) # 迈瑞医疗


获取成功,如下  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626160324732.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)


### 数据预处理


#### 变量中文化(代码部分)



import json

def get_Stock(stock_code):
df = pro.daily(ts_code=stock_code, start_date=‘20200101’, end_date=‘20200331’)
# 选择时间段2020年初爆发疫情最近3个月
columns_change = ‘{“ts_code”:“股票代码”,“trade_date”:“交易日期”,“open”:“开盘价”,“high”:“最高价”,“low”:“最低价”,“close”:“收盘价”,’
'“pre_close”:“昨日收盘价”,“change”:“涨跌额”,“pct_chg”:“涨跌幅”,“vol”:“成交量”,“amount”:“成交额”} ’
columns_changes = json.loads(columns_change)
df.rename(columns=columns_changes, inplace=True)
stock_name = stock_code[:6]
df.to_csv(stock_name + “_pr” + ‘.csv’)
print(stock_name + “预处理” + ‘:\n’, df)


可得如下  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626160915481.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)


## K线绘制


对于相关金融数据的可视化处理,下面主要通过Python中的可视化工具库来完成,包括Seaborn、Matplotlib等优秀的图像处理库,以及mplfinance这类优秀的金融数据分析工具库等。  
 (下面以Matplotlib为例~~)


### 代码部分



import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from mplfinance.original_flavor import candlestick_ochl
from matplotlib import ticker
import warnings

plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
plt.rcParams[‘axes.unicode_minus’] = False
warnings.simplefilter(“ignore”)

class VisualizingKline: # 声明:定义一个制作K线的类

def read\_file(self):
    df_stock = pd.read_csv(f'../数据获取/{self}\_pr.csv', index_col=[0], dtype={'股票代码': 'str', '交易日期': 'str'})  # 去掉第一列数字列column
    print(df_stock.head(3))     # 打印头三行
    print(df_stock.tail(3))     # 打印尾三行
    df_stock_pr = df_stock.query('交易日期 >= "20200101"').reset_index()
    df_stock_pr = df_stock_pr.sort_values(by='交易日期', ascending=True)  # 创建df\_stock\_pr接收数据按照日期降序排列的文件
    df_stock_pr['dates'] = np.arange(0, len(df_stock_pr))   # len(df\_stock\_pr):记录数
    fig, ax = plt.subplots(figsize=(9, 5))
    fig.subplots_adjust(bottom=0.2)
    candlestick_ochl(ax, quotes=df_stock_pr[['dates', '开盘价', '收盘价', '最高价', '最低价', '涨跌额']].values,
                     colorup='r', colordown='g', width=0.65, alpha=0.85)
    dt_tick = df_stock_pr['交易日期'].values

    def fm\_d(x):
        if (x < 0) or (x > len(dt_tick)-1):
            return ''
        return dt_tick[int(x)]

    ax.xaxis.set_major_formatter(ticker.FuncFormatter(fm_d))
    # 按一定规则选取并在水平轴上显示时间刻度
    plt.xticks(rotation=15)  # 关于交易日期变量的旋转角度
    ax.set_ylabel('交易价格')
    plt.xlabel('交易日期')
    plt.title(f'{self}的K线图生成如下')
    plt.grid(True)  # 网格效果
    plt.show()

### 结果展示


得到迈瑞医疗300760的K线图如下  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626161446598.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)




![img](https://img-blog.csdnimg.cn/img_convert/cdf2c315bdf7802ae62458ff889a02de.png)
![img](https://img-blog.csdnimg.cn/img_convert/2000b10ec0d8c28de744ca442cc01ded.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值