网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
import tushare as ts
import warnings
warnings.simplefilter(‘ignore’)
token = ‘XXXXXXXXXXXX’ # 以自己的token为例
pro = ts.pro_api(token)
def get_Plate(stock_code):
df = pro.ths_daily(ts_code=stock_code, start_date=‘20200101’, end_date=‘20200331’)
# df = pd.DataFrame(df)
# 选择时间段2020年初爆发疫情最近3个月
csv_name = '医疗器械概念\_pr.csv'
df.to_csv(csv_name)
print("医疗器械概念板块 + ':\n', df)
if name == ‘__main__’:
get_Plate(‘885539.TI’) # 医疗器械概念板块
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626170325161.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)
#### 获取股票数据(代码部分)
在python中进行数据获取(以迈瑞医疗2020年1月1号至2020年3月31号为例)
import tushare as ts
import warnings
warnings.simplefilter(‘ignore’)
token = ‘XXXXXXXXXXXX’ # 以自己的token为例
pro = ts.pro_api(token)
def get_Stock(stock_code):
获取这类股票的日线
df = pro.daily(ts_code=stock_code, start_date='20200101', end_date='20200331')
# 选择时间段2020年初爆发疫情最近3个月
stock_name = stock_code[:6]
df.to_csv(stock_name + '.csv')
print(stock_name + ':\n', df)
if name == ‘__main__’:
get_Stock(‘300760.SZ’) # 迈瑞医疗
获取成功,如下
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626160324732.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)
### 数据预处理
#### 变量中文化(代码部分)
import json
def get_Stock(stock_code):
df = pro.daily(ts_code=stock_code, start_date=‘20200101’, end_date=‘20200331’)
# 选择时间段2020年初爆发疫情最近3个月
columns_change = ‘{“ts_code”:“股票代码”,“trade_date”:“交易日期”,“open”:“开盘价”,“high”:“最高价”,“low”:“最低价”,“close”:“收盘价”,’
'“pre_close”:“昨日收盘价”,“change”:“涨跌额”,“pct_chg”:“涨跌幅”,“vol”:“成交量”,“amount”:“成交额”} ’
columns_changes = json.loads(columns_change)
df.rename(columns=columns_changes, inplace=True)
stock_name = stock_code[:6]
df.to_csv(stock_name + “_pr” + ‘.csv’)
print(stock_name + “预处理” + ‘:\n’, df)
可得如下
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626160915481.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)
## K线绘制
对于相关金融数据的可视化处理,下面主要通过Python中的可视化工具库来完成,包括Seaborn、Matplotlib等优秀的图像处理库,以及mplfinance这类优秀的金融数据分析工具库等。
(下面以Matplotlib为例~~)
### 代码部分
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from mplfinance.original_flavor import candlestick_ochl
from matplotlib import ticker
import warnings
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]
plt.rcParams[‘axes.unicode_minus’] = False
warnings.simplefilter(“ignore”)
class VisualizingKline: # 声明:定义一个制作K线的类
def read\_file(self):
df_stock = pd.read_csv(f'../数据获取/{self}\_pr.csv', index_col=[0], dtype={'股票代码': 'str', '交易日期': 'str'}) # 去掉第一列数字列column
print(df_stock.head(3)) # 打印头三行
print(df_stock.tail(3)) # 打印尾三行
df_stock_pr = df_stock.query('交易日期 >= "20200101"').reset_index()
df_stock_pr = df_stock_pr.sort_values(by='交易日期', ascending=True) # 创建df\_stock\_pr接收数据按照日期降序排列的文件
df_stock_pr['dates'] = np.arange(0, len(df_stock_pr)) # len(df\_stock\_pr):记录数
fig, ax = plt.subplots(figsize=(9, 5))
fig.subplots_adjust(bottom=0.2)
candlestick_ochl(ax, quotes=df_stock_pr[['dates', '开盘价', '收盘价', '最高价', '最低价', '涨跌额']].values,
colorup='r', colordown='g', width=0.65, alpha=0.85)
dt_tick = df_stock_pr['交易日期'].values
def fm\_d(x):
if (x < 0) or (x > len(dt_tick)-1):
return ''
return dt_tick[int(x)]
ax.xaxis.set_major_formatter(ticker.FuncFormatter(fm_d))
# 按一定规则选取并在水平轴上显示时间刻度
plt.xticks(rotation=15) # 关于交易日期变量的旋转角度
ax.set_ylabel('交易价格')
plt.xlabel('交易日期')
plt.title(f'{self}的K线图生成如下')
plt.grid(True) # 网格效果
plt.show()
### 结果展示
得到迈瑞医疗300760的K线图如下
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210626161446598.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0phc29uWjIyNw==,size_16,color_FFFFFF,t_70)
![img](https://img-blog.csdnimg.cn/img_convert/cdf2c315bdf7802ae62458ff889a02de.png)
![img](https://img-blog.csdnimg.cn/img_convert/2000b10ec0d8c28de744ca442cc01ded.png)
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
](https://bbs.csdn.net/forums/4f45ff00ff254613a03fab5e56a57acb)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**