既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
数据不平衡,又称样本比例失衡。对于二分类问题,在正常情况下,正负样本的比例应该是较为接近的,很多现有的分类模型也正是基于这一假设。但是在某些特定的场景下,正负样本的比例却可能相差悬殊,如社交网络中的大V判断、电商领域的恶意差评检测、金融领域的欺诈用户判断、风控领域的异常行为检测、医疗领域的肿瘤诊断
1.2 数据不平衡的常见形式及特点
根据数据量的多少和数据不平衡程度,可以将数据不平衡问题分为以几类:
(1)大数据+轻微数据不平衡(正负样本数量相差在一个数量级内)
如豆瓣上的电影评分数据分布等,此类问题常见的机器学习模型即可解决,无须额外处理。
(2)小数据 + 轻微数据不平衡(正负样本数量相差在一个数量级内)
此类问题可以通过加随机扰动的上采样方法处理。
(3)大数据 + 中度数据不平衡(正负样本数量相差在两个个数量级内)
此类问题可以通过下采样的方法处理。
(4)小数据 + 中微数据不平衡(正负样本数量相差在两个数量级内)
如医学图像分析。此类问题可以用数据合成的方法来解决。
(5)大数据 + 重度数据不平衡(正负样本数量相差超过两个数量级)
如金融领域的欺诈用户判断,风控领域的异常行为检测。此类问题可以通过一分类(one-class Learning)或离群点异常检测方法来解决。
(6)小数据 + 重度度数据不平衡(正负样本数量相差超过两个数量级)
如医疗领域的肿瘤诊断。此类问题可以通过一分类(one-class Learning)或离群点异常检测方法来
2.常见的
2.1 数据采样
数据采样通过对原始数据集进行处理,使各类别数据比例维持在一个合理的比例。可分为上采样和下采样。
(1)上采样。上采样(Oversampling)是通过把少量数据类别的数据重复复制的方法使各类别数据比例维持在合理的比例,但是基于这样采样方法训练出来的模型容易出现过拟合,可以在每次生成新数据的时候加入轻微随机扰动。
(2)下采样。下采样(Undersampling)是通过从多数数据类中筛选出部分数据使各类别数据比例维持在合理的比例,但是这种采样方法容易丢失关键数据,可以通过多次随机下采样来
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
频,并且后续会持续更新**