【Spark Streaming】(五)Spark Streaming 与 Kafka 集成实战(2)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

kafka-console-producer.sh --broker-list 192.168.56.137:9092 --topic kafka_spark

Spark Streaming 读取 Kafka 数据源由两种模式,我会逐一讲解

三、KafkaUtils.createDstream

3.1 原理

构造函数为KafkaUtils.createDstream(ssc,[zk], [consumer group id], [per-topic,partitions] ) 使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在Spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,它同步将接受到数据保存到分布式文件系统上比如HDFS。 所以数据在出错的情况下可以恢复出来 。

  1. 创建一个receiver来对kafka进行定时拉取数据,ssc的rdd分区和kafka的topic分区不是一个概念,故如果增加特定主消费的线程数仅仅是增加一个receiver中消费topic的线程数,并不增加spark的并行处理数据数量。
  2. 对于不同的group和topic可以使用多个receivers创建不同的DStream。
  3. 如果启用了WAL(spark.streaming.receiver.writeAheadLog.enable=true)
    ,同时需要设置存储级别(默认StorageLevel.MEMORY_AND_DISK_SER_2),即KafkaUtils.createStream(….,StorageLevel.MEMORY_AND_DISK_SER)。
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值