信息学奥赛一本通 1257:Knight Moves 广度优先搜索算法(3)

时间限制: 1000 ms         内存限制: 65536 KB

【题目描述】

输入n代表有个n×n的棋盘,输入开始位置的坐标和结束位置的坐标,问一个骑士朝棋盘的八个方向走马字步,从开始坐标到结束坐标可以经过多少步。

【输入】

首先输入一个n,表示测试样例的个数。

每个测试样例有三行。

第一行是棋盘的大小L(4≤L≤300);

第二行和第三行分别表示马的起始位置和目标位置(0…L−1)。

【输出】

马移动的最小步数,起始位置和目标位置相同时输出00。

【输入样例】
3
8
0 0
7 0
100
0 0
30 50
10
1 1
1 1
【输出样例】
5
28
0
#include<bits/stdc++.h>
using namespace std;
int n;
int L;
bool vis[305][305];//地图
int sx,sy;//开始位置
int ex,ey;//结束位置
struct node {
    int x;//行坐标
    int y;//列坐标
    int step;//第几步
};
int dx[8]={1,1,-1,-1,2,2,-2,-2};
int dy[8]={2,-2,2,-2,1,-1,1,-1};
void bfs(int x,int y){
    queue <node> q;
    node t;
    t.x=x;
    t.y=y;
    t.step=0;
    q.push(t);
    while(!q.empty()){
        t=q.front();
        q.pop();
        for(int i=0;i<8;i++){
            int xx=t.x+dx[i];
            int yy=t.y+dy[i];
            int step=t.step+1;


**自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。**

**深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!**

**因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。**
![img](https://img-blog.csdnimg.cn/img_convert/a3be3d39f734520da89ff01c4ce2eb3e.png)
![img](https://img-blog.csdnimg.cn/img_convert/e0c685b72a29b42dd6a34c381bdb3e18.png)
![img](https://img-blog.csdnimg.cn/img_convert/6f6bdb0dc729b4930071fa291aff1b8b.png)
![img](https://img-blog.csdnimg.cn/img_convert/cb060fddc47be6da1cdc281642771c58.png)
![img](https://img-blog.csdnimg.cn/img_convert/c4eed2a9b08d39454501084fd3b97528.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!**

**由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
![img](https://img-blog.csdnimg.cn/img_convert/74d735db7c10621da9dd902099e881a5.png)

源码讲义、实战项目、讲解视频,并且后续会持续更新**

**如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)**
[外链图片转存中...(img-wNMMMw0y-1712880892144)]

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以帮你实现这个问题。首先,为了方便,我们将九宫重排问题抽象为一个简单的矩阵,过交换空格和数字来达到目标状态。 接下来,我们分别介绍三种算法的实现方法。 ## 广度优先搜索算法 广度优先搜索算法(BFS)从初始状态开始,逐层扩展,直到找到目标状态。我们可以用队列来实现BFS。 ``` python def bfs(start, end): queue = [(start, [])] visited = set([start]) while queue: (node, path) = queue.pop(0) if node == end: return path for move, action in next_moves(node): next_node = apply_move(node, move) if next_node not in visited: queue.append((next_node, path + [action])) visited.add(next_node) return None ``` 其中,`start`和`end`分别是初始状态和目标状态,`next_moves`函数返回当前状态下所有可行的移动方案,`apply_move`函数返回应用指定移动方案后的新状态。 ## 深度优先搜索算法 深度优先搜索算法(DFS)是一种递归算法,它从初始状态开始,尽可能深地搜索,直到找到目标状态或无法继续搜索为止。 ``` python def dfs(start, end, depth): if depth == 0: return None if start == end: return [] for move, action in next_moves(start): next_node = apply_move(start, move) if next_node not in visited: visited.add(next_node) path = dfs(next_node, end, depth - 1) if path is not None: return [action] + path return None ``` 其中,`depth`参数表示当前搜索的深度,`visited`集合用于记录已访问过的状态。 ## A*搜索算法 A*搜索算法是一种启发式搜索算法,它过估计当前状态到目标状态的距离来指导搜索方向。我们可以使用曼哈顿距离作为估价函数。 ``` python def heuristic(state, end): distance = 0 for i in range(3): for j in range(3): if state[i][j] != 0: x, y = divmod(end.index(state[i][j]), 3) distance += abs(i - x) + abs(j - y) return distance def astar(start, end): queue = [(heuristic(start, end), start, [])] visited = set([start]) while queue: (_, node, path) = heapq.heappop(queue) if node == end: return path for move, action in next_moves(node): next_node = apply_move(node, move) if next_node not in visited: visited.add(next_node) heapq.heappush(queue, (heuristic(next_node, end) + len(path) + 1, next_node, path + [action])) return None ``` 其中,`heuristic`函数返回当前状态到目标状态的估计距离,`heapq`模块用于按优先级排序队列。 下面是完整的代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值