OpenSearch 学习

cd到security目录下 我的路径为C:\Program Files\Java\jdk1.8.0_241\jre\lib\security在这里执行

keytool -import -alias abc -keystore cacerts -file D://abc.cer

D://abc.cer就是刚才导出的xxx.cer的路径

显示 是否信任此证书 输入Y 像下面这样就ok

再次运行代码 报错

Caused by: javax.net.ssl.SSLPeerUnverifiedException: Host name ‘192.168.177.129’ does not match the certificate subject provided by the peer (CN=node-0.example.com, OU=node, O=node, L=test, DC=de)
    at org.apache.http.nio.conn.ssl.SSLIOSessionStrategy.verifySession(SSLIOSessionStrategy.java:217)

此时修改windows的hosts文件添加

虚拟机ip node-0.example.com 比如下面这样 火绒安全工具就可以修改

再将代码中框柱的位置改为node-0.example.com 再次运行 没有报错

利用Dashboard 侧边栏底下的dev-tools可以查看添加的数据

右边就是查出来的数据

3 结合代码 增删改查

可以将索引(index)认为是数据库 映射(mapping)认为是字段

创建测试索引 mapping中途不能改变但是可以增加

put test_index
{
		"mappings": {
			"properties": {
				"group_create_time": {
					"type": "date",
					"format": "yyyy-MM-dd HH:mm:ss"
				},
				"log_group_name": {
					"type": "keyword"
				},
				"log_stream": {
				  "type":"nested",
					"properties": {
						"create_time": {
							"type": "date",
							"format": "yyyy-MM-dd HH:mm:ss"
						},
						"deploy_type": {
							"type": "keyword"
						},
						"log_path": {
							"type": "text"
						},
						"log_stream_name": {
							"type": "keyword"
						},
						"server_ip": {
							"type": "keyword"
						},
						"status":{
						  "type":"keyword"
						}
					}
				}
			}
		}
}

java代码实现

    public String testIndex(String indexName,HashMap mapping) {
        CreateIndexRequest request = new CreateIndexRequest(indexName);
        request.settings(Settings.builder()
                .put("index.number_of_shards", 4)
                .put("index.number_of_replicas", 3));
        request.mapping(mapping);
        try {
            CreateIndexResponse createIndexResponse = client.indices().create(request, RequestOptions.DEFAULT); // client 为RestHighLevelClient 提前设置好连接opensearch的参数 直接注入的
            return Boolean.toString(createIndexResponse.isAcknowledged());
        } catch (IOException e) {
            e.printStackTrace();
        }
        return "error happened!";
    }

插入测试数据

POST test_index/_doc
{
  "log_group_name" : "heihei",
          "group_create_time" : "2022-08-15 16:25:30",
          "log_stream" : [
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "111",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stoped"
            },
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "22",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stoped"
            }
          ]
        }
}

查看添加的数据

# 查看数据 size指定返回条数 默认10条
GET test_index/_search
{
  "size": 20
}

# 查看映射
GET test_index/_mapping

查看数据得到的结果

{
  "took" : 864,     // 耗时单位为毫秒
  "timed_out" : false,     // 是否超时
  "_shards" : {     // 分片信息的统计。total表示总共参与搜索的分片数
    "total" : 1,    // 共参与搜索的分片数
    "successful" : 1,  // 成功搜索的分片数
    "skipped" : 0, // 跳过搜索的分片数(比如搜索操作只涉及了一个分片,那么就没有被跳过的分片
    "failed" : 0   // 失败的分片数
  },
  "hits" : { // 关于搜索命中结果的信息
    "total" : { // 命中结果信息
      "value" : 3,  // 命中结果的总数
      "relation" : "eq" // 表示比较符号(这里是“eq”表示等于)。
    },
    "max_score" : 1.0,     // 最高得分,得分是评估文档与查询匹配程度的指标
    "hits" : [   // 具体命中的文档信息
      {
        "_index" : "test_index", // 文档所在的索引
        "_type" : "_doc",         // 文档所属的类型
        "_id" : "SbhIj4cBfnlzLPVVITje", // 文档的唯一标识
        "_score" : 1.0,          // 文档的得分
        "_source" : {             // 文档的原始内容,即被索引的数据。
          "log_group_name" : "88888",
          "group_create_time" : "2022-08-15 16:25:30",
          "log_stream" : [
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "xxxxxxxxxxxxxxxxxxxxxxxxxxxx",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm"
            },
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "111",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm"
            },
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "222",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm"
            }
          ]
        }
      },
      {
        "_index" : "test_index",
        "_type" : "_doc",
        "_id" : "TbhIj4cBfnlzLPVVwTgl",
        "_score" : 1.0,
        "_source" : {
          "log_group_name" : "hahaha",
          "group_create_time" : "2022-08-15 16:25:30",
          "log_stream" : [
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "111",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stop"
            },
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "22",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stoped"
            }
          ]
        }
      },
      {
        "_index" : "test_index",
        "_type" : "_doc",
        "_id" : "w7hhj4cBfnlzLPVVqjin",
        "_score" : 1.0,
        "_source" : {
          "log_group_name" : "heihei",
          "group_create_time" : "2022-08-15 16:25:30",
          "log_stream" : [
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "111",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stoped"
            },
            {
              "server_ip" : "192.168.177.128",
              "log_stream_name" : "22",
              "create_time" : "2022-08-15 16:25:30",
              "log_path" : "/path/to/log",
              "deploy_type" : "vm",
              "status" : "stoped"
            }
          ]
        }
      }
    ]
  }
}

向其中的log_stream添加数据 "ctx._source.log_stream.add(params)这句脚本意思是向_source下面的log_stream映射添加元素params

POST test_index/_update/ITZfjocBwd7nfRg9WjsH
{
  "script": {
    "source": "ctx._source.log_stream.add(params)",
    "params": 
    {
        "create_time": "2022-08-15 16:25:30",
        "deploy_type": "vm",
        "log_path": "/path/to/log",
        "log_stream_name": "8888",
        "server_ip": "192.168.177.128"
      }
  }
}
public String addLogStream(LogStreamDTO logStream) {
        try {
            HashMap<String, String> sourceMap = new HashMap<>(16);
            sourceMap.put("create_time", logStream.getCreateTime());
            sourceMap.put("deploy_type", logStream.getType());
            sourceMap.put("log_path", logStream.getPath());
            sourceMap.put("log_stream_name", logStream.getName());
            sourceMap.put("server_ip", logStream.getIp());
            sourceMap.put("status", logStream.getStatus());
            UpdateRequest updateRequest = new UpdateRequest("test_index", "_doc", logStream.getLogGroupId());
            Map<String, Object> parameters = new HashMap<>();
            parameters.put("item", sourceMap);
            Script script = new Script(ScriptType.INLINE, "painless", "ctx._source.log_stream.add(params.item)", parameters);
            updateRequest.script(script);
            UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
            log.debug("updateResponse: " + updateResponse);
            int failed = updateResponse.getShardInfo().getFailed();
            if (failed==0){
                return "success";
            }
            return "error";
        } catch (IOException e) {
            e.printStackTrace();
            return "error";
        }
    }

删除log_stream映射中 名字为test的数据 删除了无法复原

POST test_index/_update/
{
  "script": {
    "source": "ctx._source.log_stream.removeIf(item -> item.log_stream_name == params.log_stream_name)",
    "params": {
      "log_stream_name": "test"
    }
  }
}
  public String deleteLogStream(String id, String logStreamName) {
        UpdateRequest updateRequest = new UpdateRequest("test_index", id)
                .script(new Script(
                        ScriptType.INLINE, "painless",
                        "ctx._source.log_stream.removeIf(item -> item.log_stream_name == params.log_stream_name)",
                        Collections.singletonMap("log_stream_name", logStreamName)
                ));
        try {
            UpdateResponse updateResponse = client.update(updateRequest, RequestOptions.DEFAULT);
            log.debug("updateResponse: " + updateResponse);
            if (updateResponse.getShardInfo().getFailed() == 0) {
                return "success";
            }
            return "error";
        } catch (Exception e) {
            e.printStackTrace();
            return "error";
        }
    }

删除数据

# 删除指定id的文档数据 ejR3focBYtMnlZCoQd1V为其id
DELETE log_group_manager/_doc/ejR3focBYtMnlZCoQd1V
#彻底删除索引 
DELETE test_index 

未完待续…

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

CoQd1V



#彻底删除索引
DELETE test_index



未完待续....




[外链图片转存中...(img-Q1gDKSbX-1714158697353)]
[外链图片转存中...(img-AJ2Pz2TB-1714158697353)]
[外链图片转存中...(img-UkSMTUna-1714158697354)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

### Milvus、Proxima 和 OpenSearch 的功能特性对比 #### 1. 架构设计 Milvus 基于共享磁盘架构,分离了存储与计算,并支持计算节点的水平扩展。整体架构将数据流和控制流分开,系统分为四层,在可扩展性和灾难恢复方面表现优异[^4]。 相比之下,Proxima 是一款高性能向量相似度搜索引擎,专注于提供快速而精确的近似最近邻搜索服务。其内部实现细节较少公开披露,但从已知信息来看,它更侧重于优化索引结构以提高查询效率。 OpenSearch 则是一个分布式搜索和分析引擎,继承自Elasticsearch项目并进行了多项改进。该平台不仅提供了传统的全文检索能力,还增强了对时间序列数据分析的支持以及机器学习插件等功能。 #### 2. 向量搜索性能 对于大规模向量库中的高效查找操作而言: - **Milvus** 支持多种距离度量方式(如L2、内积等),并且能够处理不同类型的数据源输入;引入Range Search特性后可以更加灵活地满足实际应用场景需求[^1]。 - **Proxima** 在特定场景下表现出色,特别是在高维稀疏特征空间内的匹配任务上具有明显优势。然而具体数值上的差异取决于测试环境配置等因素影响。 - **OpenSearch** 提供KNN算法来完成基于向量相似性的排序工作,虽然官方宣称经过优化但在某些极端情况下可能不如前两者稳定可靠。 #### 3. 易用性与其他附加价值 从开发者角度考虑: - 使用 **Milvus** 配合其他工具构建复杂应用变得简单快捷,比如结合OpenAI打造智能问答解决方案时就能发挥很大作用[^2]; - 而 **Proxima** 更适合那些追求极致速度而不介意额外开发成本的企业级客户群体; - 对于已经熟悉Elastic Stack生态系统的团队来说,迁移至 **OpenSearch** 平台可能是最容易的选择之一,因为二者之间存在高度兼容性。 综上所述,这三款产品各有千秋,在选择过程中应当综合考量业务特点和个人偏好做出决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值