Code For Better 谷歌开发者之声 ——Tensorflow与深度学习_tensorflow支持什么语言(1)

给大家推荐一款丧心病狂的API测试工具:Apifox。

Apifox 是接口管理、开发、测试全流程集成工具,定位 Postman + Swagger + Mock + JMeter。点击此处跳转体验


目录

一、TensorFlow简介

二、机器学习与深度学习

2.1 什么是机器学习

2.2  什么是深度学习

2.3 机器学习和深度学习应用

2.4 趋势

三、TensorFlow实现递归神经网络


一、TensorFlow简介

TensorFlow 是由 Google 团队开发的深度学习框架之一,它是一个完全基于 Python 语言设计的开源的软件。TensorFlow 的初衷是以最简单的方式实现机器学习和深度学习的概念,它结合了计算代数的优化技术,使它便计算许多数学表达式。

TensorFlow 可以训练和运行深度神经网络,它能应用在许多场景下,比如,图像识别、手写数字分类、递归神经网络、单词嵌入、自然语言处理、视频检测等等。TensorFlow 可以运行在多个 CPU 或 GPU 上,同时它也可以运行在移动端操作系统上(如安卓、IOS 等),它的架构灵活,具有良好的可扩展性,能够支持各种网络模型(如OSI七层和TCP/IP四层)。

TensorFlow官方网站有两个,访问其中一个就可以,它们分别如下 :

e49156efc8cb4333981c281a6a3d4531.png

TensorFlow有以下重要功能 -

  • 它包含一个叫做张量概念,用来创建多维数组,优化和计算数学表达式。
  • 它包括深度神经网络和机器学习技术的编程支持。
  • 它包括具有各种数据集的高可扩展计算功能。

二、机器学习与深度学习

2.1 什么是机器学习

通常,为了实现人工智能,我们使用机器学习。我们有几种算法用于机器学习。例如:

Find-S算法,决策树算法(Decision trees),随机森林算法(Random forests),人工神经网络

通常,有3种类型的学习算法:

1,监督机器学习算法用于进行预测。此外,该算法搜索分配给数据点的值标签内的模式。

2,无监督机器学习算法:没有标签与数据点相关联。这些ML算法将数据组织成一组簇。此外,它需要描述其结构,使复杂的数据看起来简单,有条理,便于分析。

3,增强机器学习算法:我们使用这些算法来选择动作。此外,我们可以看到它基于每个数据点。一段时间后,算法改变其策略以更好地学习。

2.2  什么是深度学习

机器学习只关注解决现实问题。它还需要更加智能的一些想法。机器学习通过旨在模仿人类决策能力的神经网络。ML工具和技术是关键的两个深度学习的窄子集,我们需要用他们来解决需要思考的问题。任何深度神经网络都将包含三种类型的图层:

输入层     隐藏层        输出层

我们可以说深度学习是机器学习领域的最新领域。这是实现机器学习的一种方式。

2.3 机器学习和深度学习应用

计算机视觉: 我们将其用于车牌识别和面部识别等不同应用。

信息检索: 我们将ML和DL用于搜索引擎,文本搜索和图像搜索等应用程序。

营销:我们在自动电子邮件营销和目标识别中使用这种学习技术。

医疗诊断:它在医学领域也有广泛的应用。癌症鉴定和异常检测等应用。

自然语言处理:适用于情感分析,照片标签,在线广告等应用。

2.4 趋势

如今,机器学习和数据科学正处于趋势中。在公司中,对它们的需求正在迅速增加。对于希望在其业务中集成机器学习而生存的公司而言,他们的需求尤其大。

深度学习被发现,并证明拥有最先进的表演技术。因此,深度学习让我们感到惊讶,并将在不久的将来继续这样做。

最近,研究人员不断探索机器学习和深度学习。过去,研究人员仅限于学术界。但是,如今,机器学习和深度学习的研究正在两个行业和学术界中占据一席之地。

三、TensorFlow实现递归神经网络

递归神经网络是一种面向深度学习的算法,遵循顺序方法。在神经网络中,我们总是假设每个输入和输出都独立于所有其他层。这些类型的神经网络称为循环,因为它们以顺序方式执行数学计算,考虑以下步骤来训练递归神经网络 -

第1步 - 从数据集输入特定示例。
第2步 - 网络将举例并使用随机初始化变量计算一些计算。
第3步 - 然后计算预测结果。
第4步 - 生成的实际结果与期望值的比较将产生错误。
第5步 - 为了跟踪错误,它通过相同的路径传播,其中也要调整变量。
第6步 - 重复从1到5的步骤,直到声明获得输出的变量正确定义。
第7步 - 通过应用这些变量来获得新的看不见的输入来进行系统预测。

表示递归神经网络的示意方法如下所述 :

2f090da8be6e0c0a1fed364322a00252.jpeg

第1步  TensorFlow包括用于循环神经网络模块的特定实现的各种库。

#Import necessary modules
from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data


![img](https://img-blog.csdnimg.cn/img_convert/93c6548896a69d247269159d13ec31f6.png)
![img](https://img-blog.csdnimg.cn/img_convert/6a2c5ff6a09ccca638a8fbeb5b81efa8.png)
![img](https://img-blog.csdnimg.cn/img_convert/8cf49d56d65f3615b06a28d6f8800da0.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值