既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
+ [10. Flink 中的时间种类有哪些?各自介绍一下?](#10_Flink__212)
+ [11.WaterMark 是什么?是用来解决什么问题?如何生成水 印?水印的原理是什么?](#11WaterMark___223)
+ [12 Flink 的容错机制](#12_Flink__226)
+ [13 Flink 在使用 Window 时出现数据倾斜,你有什么解决办法?](#13_Flink__Window__231)
+ [14 Flink 任务,delay 极高,请问你有什么调优策略?](#14_Flink_delay__235)
+ [15 Flink 的内存管理是如何做的](#15_Flink__242)
+ [16 Flink 是如何支持批流一体的](#16_Flink__244)
+ [17 Flink 中的状态存储](#17_Flink__247)
+ [18. Flink 是如何保证 Exactly-once 语义的](#18_Flink__Exactlyonce__251)
+ [19. Flink 是如何处理反压的](#19_Flink__255)
+ [虽迟但到,面试总不能少了代码题:](#_261)
+ [使用JAVA或 Scala语言编程实现fink的 Word Count单词统计。](#JAVA_Scalafink_Word_Count_262)
+ [如何从Kafka中消费数据并过滤出状态为success的数据再写入到Kafka](#KafkasuccessKafka_315)
+ [文末答案整理:](#_406)
+ [总结](#_411)
引言
大家好,我是ChinaManor,直译过来就是中国码农的意思,我希望自己能成为国家复兴道路的铺路人,大数据领域的耕耘者,平凡但不甘于平庸的人。
Flink知识回顾考卷如下:
选择题
1.下面哪个不是 Dataset的转换算子()
A. readTextFile B reduce distinct D rebalance
2.关于状态管理分类,下面哪个是错误的(
A keyed state B operate state
C broadcast state D transform state
3.检查点的状态后端( state backend),下面哪个是错误的()
A Mongodb State Backend B MemoryState Backend
4.Fink中的时间以下说法正确的是()
A如果以 EventTime为基准来定义时间窗口将形成 ventTimeWindow,要求消息本身就应该
携帝 EventTime
8如果以 ngesingtTime为基准来定义时间窗口将形成 Ingesting Timewindow以 source的
systemTime为准
c如果以 ProcessingTime基准来定义时间窗口将形成 ProcessingTime window,以 opera
的
D以上说法都正确
5.fink的适合场景有哪些不适合()
A实时数据 pipeline数据抽取
B实时数据仓库和实时ETL
C事件驱动型场景,如告警、监控
D大批量的数据进行离线(t+1)报表计算
多选题
1 fik流处理特性()
A.支持带有事件时间的窗口( Window)操作
B.支持有状态计算的 Exactly-once语义
C.支持基于轻量级分布式快照( Snapshot)实现的容错
D.支持程序自动优化:避免特定情况下shue、排序等昂贵操作,中间结果有必要进行缓存
2.以下哪些是fink提供状态存储(
A. lOState Backend
B. Memory Backend
tate Backend
D. Rocks DBState Backend
3.fink核心组成部分提供了面向哪两种接口()
A.批处理接口
B.流处理接口
C.表处理接口
D.复杂事件处理接口
- flink on yarn有哪两种提交模式()
A. Yarm-alone
B. yarn-session