前言:简单介绍数据结构-图
图(Graph)数据结构详解
一、图的定义与基本概念
图是一种用于表示 ** 对象(节点)及其之间关系(边)** 的非线性数据结构,由两部分组成:
节点(Vertex/Node):表示具体对象(如城市、用户、任务等)。
边(Edge):表示节点之间的关系(如道路、关注、依赖等)。
核心术语:
有向图(Directed Graph):边有方向(如 A→B 表示 A 指向 B,单向关系)。
无向图(Undirected Graph):边无方向(A-B 表示 A 和 B 互相连通)。
权重(Weight):边可以带有数值权重(如距离、成本、时间等)。
环(Cycle):存在从某个节点出发,经过若干边后回到自身的路径(有向图中称为有向环)。
连通图:无向图中任意两节点之间存在路径;有向图中需区分 “强连通”(任意两节点可互相到达)和 “弱连通”(忽略方向后连通)。
二、图的存储方式
图的存储需兼顾空间效率和操作便捷性,常见方式有两种:
1. 邻接矩阵(Adjacency Matrix)
结构:用一个二维数组 matrix[N][N]
表示节点间的连接关系,其中 N
为节点数。
无向图中,若节点 i
和 j
连通,则 matrix[i][j] = matrix[j][i] = 1
(无权图)或权重值(带权图)。
有向图中,matrix[i][j]
表示从 i
到 j
的边。
优缺点:
优点:查询边是否存在的时间复杂度为 O(1),适合稠密图(边数接近 \(N^2\))。
缺点:空间复杂度为 O(N²),存储稀疏图(边数远小于 \(N^2\))时浪费空间.
示例(无向无权图):
节点:A(0)、B(1)、C(2)、D(3)
边:A-B,A-C,B-D
邻接矩阵:
[
[0, 1, 1, 0], // A的连接
[1, 0, 0, 1], // B的连接
[1, 0, 0, 0], // C的连接
[0, 1, 0, 0] // D的连接
]
2. 邻接表(Adjacency List)
结构:用数组或链表存储每个节点的相邻节点列表。
数组索引表示节点,对应的值为该节点的邻接节点集合(或带权重的边列表)。
优缺点:
优点:空间复杂度为 O(N+E)(E 为边数),适合稀疏图。
缺点:查询边是否存在需遍历邻接表,时间复杂度为 O(E)。
示例(有向带权图:A→B (5),B→C (3)):
邻接表:
A: [(B, 5)]
B: [(C, 3)]
C: []
三、图的遍历算法
遍历图的目的是访问每个节点一次,常见算法有两种:
1. 深度优先搜索(DFS, Depth-First Search)
思想:从起点出发,尽可能深入遍历每条路径,直到无法继续后回溯,类似树的前序遍历。
实现:用递归或栈记录访问路径。需标记已访问节点(visited
数组),避免重复访问或环导致死循环。
时复杂度:O(N+E)(邻接表存储)或 O(N²)(邻接矩阵存储)。
示例(无向图遍历起点 A):
访问顺序:A → B → D → C(可能因邻接表顺序不同而变化
2. 广度优先搜索(BFS, Breadth-First Search)
思想:从起点出发,按层次逐层访问所有相邻节点,类似树的层序遍历。
实现:用队列按顺序存储待访问节点,先入队的节点先处理。
时间复杂度:同 DFS。
示例(无向图遍历起点 A):
访问顺序:A → B → C → D(按层次扩展)
四、图的应用场景
社交网络:用户为节点,关注 / 好友关系为边,分析社群结构(如连通分量)。
交通网络:城市为节点,道路为边,计算最短路线(Dijkstra 算法)。
计算机网络:路由器为节点,连接为边,检测网络连通性(BFS / 并查集)。
推荐系统:用户与物品为节点,交互行为为边,用图算法挖掘关联关系(如协同过滤)。
编译器:表达式树优化、函数调用图的拓扑排序。
五、图的扩展与变种
带权图:边带有权重,适用于成本、距离等场景。
二分图:节点可分为两部分,所有边仅存在于两部分之间(如任务分配问题)。
超图:边可连接两个以上节点(传统图的边仅连接两个节点)。
动态图:节点和边可动态添加或删除(如实时社交网络)。