15K star!超越RAG,让大模型拥有个性化记忆

通过RAG来增强LLM已经是目前很多的首选,但是最近有一个新的开源项目让大家看到了更好的选择的可能。

今天我们分享一个开源项目,它号称是RAG的下一代技术,让大模型可以拥有个性化的记忆,它就是:mem0

mem0 是什么

Mem0,前身为 EmbedChain, 是一款由 YC 孵化的开源技术,致力于为 AI 代理提供长期记忆能力。Mem0 旨在为大型语言模型 (LLM) 和 AI 代理提供一个记忆层,从而实现真正个性化的 AI 交互。它允许开发者通过集成长期记忆来增强他们的 AI 代理,从而带来更具适应性和个性化的 AI 体验。Mem0也是YC资助的项目。

在这里插入图片描述

简单的说,Mem0 为大语言模型提供了一个智能、自我改进的记忆层,实现了跨应用的个性化 AI 体验。

核心功能包括:

  • 多级内存:用户、会话和 AI 代理内存保留
  • 自适应个性化:基于交互的持续改进
  • 开发人员友好型 API:轻松集成到各种应用程序
  • 跨平台一致性:跨设备的统一行为
  • 托管服务:无忧托管解决方案

对比RAG

Mem0称自己是 RAG 发展的下一个阶段,相比 RAG 的核心区别:关注实体和实体关系;关注最近、最相关的;上下文连续性;适应性学习;动态更新信息。而普通 RAG 只是单纯的从静态的文档中检索信息。

具体来说,Mem0 提供的记忆实现相比 RAG 具有以下优势:

  • 关注实体关系:Mem0 能理解和关联不同交互中的实体,而 RAG 则从静态文档中检索信息。这使得 Mem0 对上下文和关系的理解更深刻。
  • 最近性、相关性和衰减:Mem0 优先考虑最近的交互,并逐渐忘记过时的信息,确保记忆保持相关和最新,以提供更准确的响应。
  • 上下文连续性:Mem0 在多个会话中保留信息,保持对话和交互的连续性,这对于长期参与应用,如虚拟伴侣或个性化学习助手来说至关重要。
  • 自适应学习:Mem0 根据用户交互和反馈改进其个性化,使记忆随着时间的推移更加准确和贴合个人用户。
  • 动态更新信息:Mem0 能够根据新的信息和交互动态更新其记忆,而 RAG 依赖于静态数据。这允许实时调整和改进,提升用户体验。

这些先进的记忆功能使 Mem0 成为开发者创建个性化和上下文感知 AI 应用的强大工具。

安装和使用

Mem0 还提供了开发者友好的 API,安装和使用也很简单。

通过pip安装mem0

pip install mem0ai

基本用法:

import os
from mem0 import Memory

os.environ["OPENAI_API_KEY"] = "xxx"

# Initialize Mem0
m = Memory()

# Store a memory from any unstructured text
result = m.add("I am working on improving my tennis skills. Suggest some online courses.", user_id="alice", metadata={"category": "hobbies"})
print(result)
# Created memory: Improving her tennis skills. Looking for online suggestions.

# Retrieve memories
all_memories = m.get_all()
print(all_memories)

# Search memories
related_memories = m.search(query="What are Alice's hobbies?", user_id="alice")
print(related_memories)

# Update a memory
result = m.update(memory_id="m1", data="Likes to play tennis on weekends")
print(result)

# Get memory history
history = m.history(memory_id="m1")
print(history)

上述的示例代码展示了如何添加记忆、检索记忆、搜索、更新和获取记忆历史。

注意代码里的metadata, 这里相当于定义了一个schema,让LLM从非结构化数据里提取相关的记忆信息。

高级使用,在面向生成的环境中,可以增加向量数据库比如Qdrant

from mem0 import Memory

config = {
    "vector_store": {
        "provider": "qdrant",
        "config": {
            "host": "localhost",
            "port": 6333,
        }
    },
}

m = Memory.from_config(config)

实现原理

从本质上讲,Mem0 是AI 应用程序和内存存储之间的智能中介。与 LLM 集成后,Mem0 可管理信息的存储、检索和优先级排序。

以下是简化的工作流程:

  1. 当用户与AI交互时,Mem0会存储来自交互的相关信息。
  2. 在后续交互中,Mem0 检索相关的过去信息,为 LLM 提供背景信息。
  3. 系统不断更新对最相关信息的理解,以适应用户的需求。

Mem0 使用先进的矢量存储技术来有效地管理和查询大量数据,确保快速和相关的信息检索。

在源码中可以看到项目包含4个核心模块:embeddings、llms、memory、vector_stores,最重要的就是memory部分,提供对记忆的处理能力。结合前面的快速上手,我们可以看到,mem0的memory部分提供的能力简单点说就是记忆的“增删改查”,具体如下:

Store a Memory
Retrieve Memories
Search Memories
Update a Memory
Memory History
Delete Memory

参考例子

在mem0的文档中还提供了一些例子来方便大家更好的理解其作用,比如个人AI助理、AI旅行助手、客服AI助手等,都包含说明和 示例的代码。

以下是使用mem0来构建一个只能旅游助手的代码。

import os
from openai import OpenAI
from mem0 import Memory

# Set the OpenAI API key
os.environ['OPENAI_API_KEY'] = 'sk-xxx'

class PersonalTravelAssistant:
    def __init__(self):
        self.client = OpenAI()
        self.memory = Memory()
        self.messages = [{"role": "system", "content": "You are a personal AI Assistant."}]

    def ask_question(self, question, user_id):
        # Fetch previous related memories
        previous_memories = self.search_memories(question, user_id=user_id)
        prompt = question
        if previous_memories:
            prompt = f"User input: {question}\n Previous memories: {previous_memories}"
        self.messages.append({"role": "user", "content": prompt})

        # Generate response using GPT-4o
        response = self.client.chat.completions.create(
            model="gpt-4o",
            messages=self.messages
        )
        answer = response.choices[0].message.content
        self.messages.append({"role": "assistant", "content": answer})

        # Store the question in memory
        self.memory.add(question, user_id=user_id)
        return answer

    def get_memories(self, user_id):
        memories = self.memory.get_all(user_id=user_id)
        return [m['text'] for m in memories]

    def search_memories(self, query, user_id):
        memories = self.memory.search(query, user_id=user_id)
        return [m['text'] for m in memories]

# Usage example
user_id = "traveler_123"
ai_assistant = PersonalTravelAssistant()

def main():
    while True:
        question = input("Question: ")
        if question.lower() in ['q', 'exit']:
            print("Exiting...")
            break

        answer = ai_assistant.ask_question(question, user_id=user_id)
        print(f"Answer: {answer}")
        memories = ai_assistant.get_memories(user_id=user_id)
        print("Memories:")
        for memory in memories:
            print(f"- {memory}")
        print("-----")

if __name__ == "__main__":
    main()

总结

Mem0 作为一种革命性的AI记忆技术,为构建个性化的AI应用提供了全新的解决方案。Mem0 不仅可以提高AI代理的智能水平,还可以为用户带来更加个性化和人性化的AI体验。相信在不久的将来,Mem0 将会应用到更多的AI应用场景中,为我们带来更加智能和便捷的生活体验。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值