- 博客(416)
- 资源 (2)
- 收藏
- 关注
原创 MCP 之后又一 AI Agent 协议刷屏了:AG-UI 协议架构设计剖析
AG-UI 就像 REST 是客户端到服务器请求的标准一样,AG-UI 将实时 AI Agent 更新流式传输回 UI 的标准。AG-UI 让你能够轻松地在网页、APP、应用程序或嵌入式设备中集成 AI 助手、AI 客服和智能问答 UI,避免了为每个应用程序重复开发基础功能的麻烦,也省去了处理交互逻辑的烦恼。I Agent 在落地过程中,MCP 解决了 AI Agent 到 Tools 之间的通信标准,A2A 解决了 AI Agent 到 AI Agent 之间的通信标准。
2025-05-15 08:01:08
944
原创 万字长文剖析 AI 时代应用开发的9个新范式
现在,随着像 Replit、Same.dev、Loveable、Convex 的 Chef 和 Bolt 这样的文本到应用平台的出现,以及像 Cursor 这样的 AI IDE,这种动态正在发生变化。试想一下,在不远的将来,一个规模庞大、功能丰富的能力注册表横空出世,AI Agent 可以像如今的开发者使用 npm 或 PyPI 一样,轻松地在其中发现并调用各种新能力。想象一下这个场景:一个 AI Agent 正在监控你的系统,它不需要漂亮的图表,它需要结构化的数据和可执行的上下文。
2025-05-13 08:02:02
630
原创 一文剖析基于 MCP 的 AI 应用技术架构全景视图:从基础实施层、云原生层、模型层、应用技术层、应用架构层、到应用层
MCP 已经成为业界的标准,基于 MCP 的 AI 应用技术已经在具体的业务场景落地实践,本文通过梳理基于 MCP 的 AI 应用技术架构的全景视图,让你全面了解 AI 应用技术的各个层次,从基础实施层、云原生层、模型层、应用技术层、应用架构层、到应用层,如下图所示,揭示基于 MCP 的 AI 应用技术如何在不同的层面上协同工作,推动产业应用的落地。通过融合文本、图像、音频等多种模态的信息,该技术提升了模型的精确度和稳健性,并在安全监控、医疗诊断等多个领域得到了广泛应用。
2025-05-11 09:19:42
496
原创 企业级 AI Agent 系统落地架构设计剖析
我们认为这是至关重要的。对于用户的 Prompt 提示词,AI Agent 会基于大模型先做规划(Planning),拆解成若干子任务,然后对每个子任务分别执行(Action),同时对每一步的执行结果进行观测(Observation),如果观测结果合格,就直接返回给用户最终答案,如果观测结果不合格或者执行出错,会重新进行规划(Replanning)。或者更准确地说--构建 AI Agent 的原型很容易,但可靠的和企业级的 AI Agent,能够支持关键业务应用的 AI Agent,这是很难的。
2025-05-10 08:01:43
903
原创 AI 应用性能优化全景图
比如:NVIDIA 的 CUDA、AMD 的 ROCm、平头哥半导体的 HGAI、华为的 Ascend C、寒武纪的 BangC、摩尔线程的 MUSA、燧原科技的 Tops Riser、沐曦集成的 MXMACA 以及壁仞科技的 SUPA 等平台,不仅提供针对硬件优化的编程语言,还配套提供了一系列开发者工具,比如:库、工具包和文档等。国内主流的大语言模型方案有:阿里云的 Qwen、DeepSeek、百度的文心一言、字节跳动的豆包、腾讯云的混元、科大讯飞的星火以及月之暗面科的 Kimi 等。
2025-05-09 07:30:45
1139
原创 基于 Spring AI Alibaba 的 RAG 架构调优实践
查询翻译是 RAG 系统中的一项便捷功能,它允许将用户的查询从一个语言版本转换为另一个语言版本。Spring AI Alibaba 提供了一种高效的查询扩展功能,能够自动产生多个相关的查询版本,进而提升搜索的精确度和覆盖率。这一步骤的关键价值在于,优质的知识切割如同图书馆的分类系统,决定了检索效率。”的查询时,系统将生成多个从不同视角出发的查询。查询改写是 RAG 系统中的一项关键优化手段,它通过将用户的原始查询转化为更加规范和明确的查询形式,从而提升搜索的精确度,并协助系统更准确地把握用户的真正需求。
2025-05-08 08:01:33
651
原创 AI 应用推理架构中5大关键问题的解决方案
在传统的应用场景中,由于每个用户请求对服务器的资源消耗相差不大,且请求执行速度快、资源消耗少,因此在请求数量足够多的情况下,各个服务器的负载会趋于均衡。这种方法有效减少了用户端的重试频率。同时,Redis 作为消息队列,不仅解耦了接入服务和限流服务,还完成了限流结果的实时推送,提高了系统的灵活性和响应速度。在复杂的模型推理场景中,由于推理过程耗时较长且推理时间不确定,如果接入服务同步等待结果,可能会导致过多的 HTTP 连接,以及因连接异常断开而导致的请求失败等问题,这些问题会降低整体性能并增加失败率。
2025-05-07 08:05:09
618
原创 告别传统 RAG,私有知识库 + DeepSeek,打造本地版 Deep Research
因此 AI Agent 智能体足够重要,但也足够复杂,我这两年实践结论是,想开发出一个能够可靠稳定的 AI Agent 智能体应用实在太难了,大模型技术本身的复杂度,大模型推理的不确定性,响应速度性能问题等等,这些困难直接导致很多人对其望而却步,或是遇到问题无从下手。这些数据可以是企业内部数据、在线下载的数据,或者是其他系统中定期导入的数据。,我们正在经历一场重大技术变革,还不像当年的互联网的兴起,这是一场颠覆性的变革,掉队就等于淘汰,因为未来所有应用都将被 AI Agent 智能体重写一遍;
2025-05-05 08:02:52
591
原创 万字长文剖析基于 MCP 构建 AI 大模型新架构体系的落地实践
虽然 MCP 提供了统一的协议,但将现有业务重构为 MCP Server 的成本非常高,且目前支持的开发语言有限,像 Go 和 PHP 都没有对应的 MCP SDK。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。在 AI 应用中,尤其是流程式构建的模式中,大多数 AI Agent 的职责单一,计算逻辑简单,因此可以用较小资源规格的函数承载。
2025-05-04 08:05:34
931
原创 RAG 之父:RAG Agents 企业级落地的10个经验教训!
从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI 大模型应用落地项目全流程重点难点问题解决。而是关注业务目标、用户体验和解决企业实际问题。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。Agent、RAG、Fine-tuning 微调、MCP、Prompt。
2025-05-03 08:02:34
648
原创 MCP (模型上下文协议)架构设计深度剖析
这个协议的野心不小,它想做的事情就像编程语言里的 LSP(Language Server Protocol)一样,为 AI 和工具之间的互动设定一个标准,让 AI Agent 能动态地发现、选择和组织工具,甚至还支持人在操作过程中插手。在整个运行阶段,MCP服务器保持稳定和受控的环境,使可靠和安全的任务执行成为可能。如图 2 所示,在典型工作流程中,用户向 MCP 客户端发送提示词,客户端分析意图,通过 MCP 服务器选择适当的工具,并调用外部 API 来检索和处理所需的信息,然后通知用户结果。
2025-05-02 08:03:16
790
原创 Spring AI 1.0.0 发布!支持 MCP 很炸裂!!
无论你使用的是 OpenAI 的 GPT、深度求索的 DeepSeek、谷歌的 Gemini、Anthropic 的 Claude,还是 Hugging Face 上的开源模型,Spring AI 都旨在提供一套统一且可移植的 API,让你能够轻松调用。它的目标是将 Spring 生态系统中的一些设计原则,比如:可移植性和模块化设计,应用到 AI 领域。Spring AI 的 MCP 功能是在 MCP Java 开发包的基础上,增加了和 Spring Boot 集成的功能,提供了客户端和服务端的启动器。
2025-04-24 08:04:12
1799
原创 MCP 实践:基于 MCP 架构实现知识库系统
从 MCP 服务器的日志中可以看到自动调用了知识库和 FAQ 的检索工具,并能根据之前导入的内容进行回答。将切分后的文本段和提取的 FAQ 导入知识库,并进行 Embedding 处理,以便将文本转换为向量形式,便于检索。通过这些优化,我们的知识库构建和检索流程能够更有效地处理和响应用户查询,提供更准确、更全面的答案。对输入的文本进行切分,确保切分后的文本段在保持完整性和语义连贯性的同时,便于后续处理和检索。从文本中提取常见问题及其答案(FAQ),作为知识库的一部分,以增强检索的准确性和效率。
2025-04-23 08:01:24
1014
原创 谷歌 A2A (Agent2Agent)架构设计深度剖析
这一协议为各类 AI Agent 之间的高效沟通与协作搭建了桥梁,无论是独立 Agent 与独立 Agent、独立 Agent与企业 Agent,还是企业 Agent与企业 Agent,都可以通过该协议实现通信交互和事务协作。值得注意的是,一个 Agent 既可以作为客户端 Agent 发起任务,也可以作为服务端 Agent 执行任务,具有双重角色的灵活性。Server Agent:服务端 Agent 是任务的执行者,它接收来自客户端 Agent 的请求,并执行相应的操作。:这是一个很有趣的功能。
2025-04-22 08:01:45
777
原创 MCP 和 A2A 架构设计剖析
其实,一直以来,人们都在寻找一种方法,能让大量的 AI Agent 之间互相连接,还能和传统的系统连接。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。随着 MCP 的迅速流行,公司把 MCP Server 作为他们产品的一部分变得很常见,这样开发者就可以轻松地把这些平台的内容整合到他们自己的基于 LLM 的应用中。谁知道呢,让我们拭目以待。
2025-04-21 10:05:30
1053
原创 深度好文剖析 MCP 驱动下 AI 应用架构设计新范式的落地实践
虽然 MCP 提供了统一的协议,但将现有业务重构为 MCP Server 的成本非常高,且目前支持的开发语言有限,像 Go 和 PHP 都没有对应的 MCP SDK。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。在 AI 应用中,尤其是流程式构建的模式中,大多数 AI Agent 的职责单一,计算逻辑简单,因此可以用较小资源规格的函数承载。
2025-04-20 08:02:54
1063
原创 从架构设计侧剖析: MCP vs A2A 是朋友还是对手?
其实,一直以来,人们都在寻找一种方法,能让大量的 AI Agent 之间互相连接,还能和传统的系统连接。Anthropic 推出的 MCP(模型上下文协议)取得了成功,这显然激发了 AI 行业里的其他参与者,大家都想来定义一些开放协议,好用在 AI Agent 系统(Agentic Systems)的集成里。随着 MCP 的迅速流行,公司把 MCP Server 作为他们产品的一部分变得很常见,这样开发者就可以轻松地把这些平台的内容整合到他们自己的基于 LLM 的应用中。谁知道呢,让我们拭目以待。
2025-04-16 08:03:10
731
原创 11张图全面总结 MCP、A2A、Function Calling 架构设计间关系
MCP 的扩展性则通过统一的接口标准,将复杂的 M(个模型)×N(个外部工具对接)问题转化为 M+N 的问题。目前,MCP 生态已经得到了广泛的支持,包括 Anthropic 的 Claude 系列、OpenAI 的 GPT 系列、Meta 的 Llama 系列、DeepSeek、阿里的通义系列以及 Anysphere 的 Cursor 等主流模型均已接入 MCP 生态。从大模型本身,到为大模型添加工具调用功能,再到大模型与工具的交互标准,最后到 AI Agent 之间的通信协议,这一系列的发展就像是。
2025-04-15 08:04:53
694
原创 MCP 架构设计深度剖析
随着 AI 大模型技术的不断进步,我们逐渐认识到,为大模型提供更结构化、更具体的上下文信息,能够显著提升模型的性能。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。MCP 定义了应用程序和 AI 大模型之间交换上下文信息的方式,为开发者提供了一种一致的方法,将各种数据源、工具和功能连接到 AI 大模型。这不仅提高了开发效率,还增强了系统的灵活性和可扩展性。
2025-04-14 08:01:48
801
原创 从 MCP 到 A2A,AI Agent 应用架构设计演进之路
而 A2A 协议的出现,则进一步推动了 AI Agent 的发展,使得不同底层框架和供应商平台创建的 AI Agent 能够实现相互通信与协作。基于 A2A 协议的开源理念,谷歌并未为其添加任何独有的内容,而是采用了当前流行的标准技术进行构建,比如:HTTP、SSE、JSON-RPC 等。以一个更直观的例子来说,倘若 A2A 协议能够像 MCP 协议那样得到广泛采用,那么在阿里云上创建的 AI Agent 将能够与火山云上创建的 AI Agent 进行无缝的通信与协作。
2025-04-13 08:01:23
784
原创 万字长文深度剖析基于 MCP 实现 AI 应用架构设计新范式的落地实践
虽然 MCP 提供了统一的协议,但将现有业务重构为 MCP Server 的成本非常高,且目前支持的开发语言有限,像 Go 和 PHP 都没有对应的 MCP SDK。LLM 接收到信息后,根据用户问题和 MCP Server 信息,筛选出最合适的 MCP Server 和 MCP Tool 来解决问题,并将结果反馈给 AI Agent(MCP Client)。在 AI 应用中,尤其是流程式构建的模式中,大多数 AI Agent 的职责单一,计算逻辑简单,因此可以用较小资源规格的函数承载。
2025-04-12 08:01:44
756
原创 “谷歌版 MCP”来了!重磅开源 A2A 智能体交互新架构
当智能体需要与外部的黑箱智能体(例如,Blackbox Agent 1, Blackbox Agent 2)进行协作沟通时,它会利用 A2A 协议。不同平台构建的 AI Agent 智能体之间可以实现通信、发现彼此的能力、协商任务并开展合作,企业可以通过专业的智能体团队处理复杂的工作流程。,即 Agent-to-Agent,这项协议使得 AI Agent 智能体能够在不同的生态系统中安全地进行协作,无需考虑框架或供应商的差异。:A2A 专注于智能体之间的沟通与合作,以及智能体与用户之间的互动。
2025-04-11 08:02:24
1017
原创 AI 大模型应用开发全攻略
客服作为售后服务,用户带着问题和情绪而来,他们需要的是明确的解决方案,而不是机械式的安慰和模糊的答案。确定这些关键因素后,再去思考 LLM 能在这些方面带来哪些帮助,然后构建你的解决方案,这样的应用方式才是可靠的。举个例子,假设我手头有一堆关于数据仓库的问题和答案(Q&A),我想基于这些 Q&A 来创建一个问答机器人,让它能够根据这些 Q&A 来回答用户的问题。如果要求一步步计算,尽管表现可能仍有不足,但大模型展现出了对自然语言的容错能力,能够像人类一样去思考,而不是遵循一成不变的逻辑。
2025-04-09 12:15:43
1100
原创 MCP 架构设计剖析:从 Service Mesh 演进到 Agentic Mesh
如上图所示,应用程序A和应用程序B交互,请求调用关系如下:应用程序A调用本地的 Sidecar A,Sidecar A 在通过网络交互调用远端的 Sidecar B,再由 Sidecar B 把请求传递给应用程序B。在这样的架构模式下,业务应用程序再也不需要关注服务治理的功能,服务治理的功能升级也不要依赖于服务自身,从而能够让业务迭代更快速和高效。:如果部署在不同的机器上,就会又引入服务通信交互的问题,那么就会变成无解的难题:为了解决通信交互的问题,又引入新的通信交互的问题。
2025-04-08 08:02:54
827
原创 MCP 架构设计案例剖析:Nacos MCP Registry 实现存量应用接口升级 MCP 协议
通过统一的接口描述协议,我们可以对 Nacos 中的服务进行 MCP 化改造。:当 MCP Client 调用 Tool 时,Higress 将 tool/call 的 JSON RPC 请求解析出来,通过用户配置的参数映射信息、Path、后端地址等信息,Higress 生成后端的 HTTP 调用请求,并进行调用。服务管理与监控:随着 MCP 服务数量的增加,Nacos 提供了大规模服务管理能力,包括健康检查、实时更新和负载均衡,确保 MCP 服务的高效运行,同时作为 MCP 服务发现中心的托管平台。
2025-04-07 11:36:58
1487
原创 MCP 架构设计演进:从 Local MCP Server 到 Remote MCP Server 开源架构设计实现
并得到更广泛的应用。Higress 作为专为 AI 设计的原生 API 网关,不仅能够应对这些挑战,还提供了一套完整的开源 MCP Server 架构设计托管解决方案,下面对架构设计详细剖析。这为早期采用 MCP 的用户埋下了隐患,当构建了大量 MCP Server 后,面对未来协议版本升级,可能需要进行大量的升级改造工作。这种灵活的架构设计使企业能够根据自身需求选择最适合的部署方式,既可以充分利用 Higress 提供的一站式托管服务,也可以保持现有 MCP Server 的独立性。
2025-04-06 08:02:06
1064
1
原创 王炸!MCP 架构设计深度剖析 & 使用 Spring AI + MCP 四步教你实现 Agent 智能体开发
总体而言,MCP 解决了 Client 和 Server 之间的数据交互问题,但在 LLM 到 Tool 的对接上仍有不足:不同模型对 Function Call 的支持程度参差不齐,例如 DeepSeek R1 就不支持,这就导致了工具路由的问题。只不过,MCP 连接的不是物理设备,而是 AI 大模型与外部的数据源、工具等。你可以把 MCP 想象成你雇来的得力助手,你只需要告诉他你的想法,他就会负责跑腿和执行具体任务,而你只需负责下达指令和验收最终结果。
2025-04-05 18:11:35
1388
原创 Manus 技术架构设计剖析和复刻落地实现
我有幸体验了 Manus 的运行效果,结合其实际表现、OpenManus 的开源代码以及网传的 Prompt 信息,大致分析出了 Manus 的技术架构设计实现原理,并尝试复刻了一个版本,下文详细剖析。不过,需要指出的是,当前版本仍基于插件工具的形式,实现的是单 Agent 形态的 ReAct 模式。以邮箱域名解析检测逻辑的测试为例,该模型已基本实现了多步调用命令工具的流程,并且能够依据调用结果,精准总结出问题的原因分析以及相应的解决方案。此外,还支持多种子操作,如浏览、翻页、刷新、点击、输入、移动等。
2025-04-02 10:34:59
911
原创 12张图清晰总结 MCP、RAG、Agent 架构设计间的关系
当 RAG 与 Agent 结合使用(即 Agentic RAG)时,Agent 的决策能力和 RAG 的知识能力相互增强,提升整体性能。这种整合方法创造出比任何单一组件都更强大、更可靠、更适应性强的 AI 系统,能够理解上下文,检索相关信息,并采取适当行动完成任务。系统结合决策能力和事实信息处理复杂任务:Agent 将检索到的知识与自身的决策能力相结合,处理复杂的任务,生成准确、可靠的回应。从 MCP 的提示混合机制,到 RAG 的知识检索增强,再到 Agent 的自主决策框架等多个方面。
2025-03-29 07:50:23
1230
原创 Java 版 Manus 实现来了,Spring AI Alibaba 发布开源 OpenManus 实现
请提供详细的行程安排,并制作一个简单的 HTML 旅行手册,其中包含地图、景点描述、基本韩语短语和旅行提示,供我整个旅程参考。从规划图中可以看出,除了框架原子抽象之外,Spring AI Alibaba 重点规划了 Multi-Agent 框架,以及配套的生态系统,如可视化评估平台、调试 Studio 等。这种架构设计充分发挥了多智能体协作的优势,通过明确的分工和有序的执行流程,实现了复杂任务的高效处理。:当前的工具,比如:浏览器使用、脚本执行工具等,覆盖范围和执行效果都较为一般,需要进一步优化。
2025-03-28 07:50:39
1801
原创 从 Manus 到 DeepSearcher,2025年最值得关注的十大 Agent 智能体架构设计
借助 GPT-4 的强大能力,AutoGPT 能够将复杂目标拆解为更小的、可执行的任务,依次执行这些任务,并根据结果进行迭代,以达成预期目标。本文中介绍的这些 AI Agent 仅仅是 2025 年代表性产品中的一小部分,其他有前景的 Agent,如 Anthropic Claude Agents、Hugging Face Transformers Agents 以及 Llamaindex 的 Llama Agents,同样值得关注。对于开发者来说,Copilot 的功能远不止于终端用户的任务。
2025-03-27 08:02:59
801
原创 实操干货!MCP 全解析,手把手教你基于 MCP 开发 Agent
与 LLM 应用直接连接外部资源的方式相比,这里主要增加了一个中间层(MCP Server)以及用于连接该中间层的(MCP Client)。以下内容仅针对本地部署模式。:如果外部资源的接口发生变化,只需在对应的 MCP Server 上进行修改,所有连接的 LLM 应用都能无缝适应。:通过共享 MCP Server,新的 LLM 应用能够快速获得各种工具,形成一种新的合作体系,从而提升整体的效用。需要注意的是,不同的 MCP Server 可能有不同的启动命令,具体请查看 MCP Server 的说明书。
2025-03-25 08:01:34
776
原创 重磅!AI 大模型又起飞了!!
我们将深入解析大模型的底层原理与技术架构,剖析 AI 技术的应用场景,并结合实战经验,帮助你落地 AI 技术。通过这种方式,大模型能够集成外部工具和资源,实现更复杂的任务,从而提升交互性和实用性。毕竟AI时代,谁先尝试,谁就能占得先机!等热门 AI 大模型产品的技术架构,教你如何利用 AI 大模型落地应用场景,快速交付业务价值。他们不仅会把大模型的技术原理讲得透彻,还会无私分享丰富的商业化 A I应用项目经验,如今,技术圈降薪裁员事件频发,传统岗位大幅缩水,而 AI 相关技术岗位却在疯狂扩招,
2025-03-24 08:03:26
974
原创 DeepSeek 被放弃,阿里赢了
暂时并不考虑商业化的问题,并且选择了开源路线。事实证明,那些曾经风靡一时、霸占榜单的 AI 应用,如今大多已销声匿迹,而 DeepSeek 却凭借厚积薄发,一跃成为行业黑马。,从需求分析、架构设计、架构技术选型、硬件资料规划、核心代码落地、服务治理等全流程实践,深度学习企业级 AI Agent 智能体项目全流程重点难点问题解决。的 AI Agent 智能体技术选型及开发实践,学会开发 AI Agent 智能体核心技术能力。的 AI Agent 智能体的设计开发和维护,学会解决企业级实际问题的能力。
2025-03-23 08:02:17
784
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
675
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
898
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
783
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
455
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
730
原创 为什么 RAG 系统“一看就会,一做就废“?
然后,在重排阶段,模型会对这些结果进行深入分析,并将最相关、最符合用户查询意图的结果(如最新上映的科幻电影列表、评论或推荐)排在前面,同时将那些关于科幻电影历史或不太相关的内容排在后面。例如,当用户查询“最新上映的科幻电影推荐”时,可能得到的结果是“科幻电影的历史演变”,虽然从语义上这与科幻电影相关,但并未直接回应用户关于最新电影的查询。此外,使用少量样本(few-shot)的方法,将想要的问答例子加入提示词中,指导 LLM 如何利用检索到的知识,也是提升 LLM 生成内容质量的有效方法。
2025-03-21 08:01:26
592
搜索入门搜索入门资料,绝对值得看!!!!!
2008-09-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人