个人背景
大家好,我是一名日语专业的普通本科生,毕业后1年软件测试,5年产品经理工作经验,目前已成功转行AI产品经理,面试了百度、阿里、理想汽车、百川智能、华为、OPPO等多家大厂。
以下是求职复盘过程中的面经,整理了一下答案,现在分享给大家,期望对大家求职AI产品经理有帮助。
第一家:理想汽车
一面:45分钟
1、之前公司的产品是什么?客户群体是哪些?介绍过往项目经验。
2、如何做竞品调研的?产品的核心竞争力是什么?
3、您设计的产品是怎样评估产品的好坏的?
4、过往工作中NLP模型的应用场景是什么?在智慧问答模型上有较为完整的产品经验吗?
5、如何定义一个NLP模型对翻译结果的准确性?怎么定义指标?
6、上家公司的离职原因、到岗时间及期望薪资。
7、到岗时间:如果面试通过,需要1-2周交接工作,最迟20天到岗
二面:50分钟
1、自我介绍。
2、刚刚提到了CNN、RNN、Transformer、Diffusion等AI技术,详细讲讲你对AI技术的理解。
3、文生图、图生图方面的做过吗?展开讲讲。
4、如何做评测生成效果好与不好?除了人工评测,有具体评测指标吗?都是具体业务场景的,对吗?
5、之前做的OCR识别还有印象吗?是怎么做的?参与到什么程度?图片识别不精准是如何优化的?
6、你有了解过CV和理想汽车吗?印象最深的是什么?
7、平时会经常开车吗?体验过理想汽车的智能座舱吗?
8、我这边没什么问题,你有什么问题?
第二家:百川智能
一面:35分钟
1、自我介绍
2、RNN和Transformer原理是什么?为什么Transformer比RNN用得更多?
3、OCR项目是怎么做的?当时的技术和现在使用大模型会有什么区别?
4、智能客服项目针对的应用场景是什么?B端还是C端?
5、如何进行评测?判断生成的效果是否好?
6、智能客服项目期间,提示词如何进行设计?如何进行优化?
7、为什么离职?你会来北京吗?你是怎么了解百川的?
8、使用过百川大模型吗?感觉怎么样?有些什么建议吗?界面简洁、生成速度快 改进:指令中心/用户反馈
9、你有什么问题吗?
1)团队规模是多大?
2)刚刚回答的问题有哪些地方回答得不好,怎么能回答更好?
3)介绍百川prompt产品经理岗位职责,一个项目的流程。
二面:42分钟
1、自我介绍
2、全面介绍一下智能客服项目
3、大模型是自研还是开源的?离线部署还是调用API?如何平衡投入与产出比?
4、智能客服为什么比传统客服好?在哪些方面有提升?
5、问答知识库你是怎么做的,流程是怎么样?
6、对大模型你做了哪些方面的优化,让回答效果更好?
7、面向B端还是C端用户?
8、你作为AIGC产品经理,大模型的搭建,你负责哪些工作?
9、如何评测大模型效果好不好?
10、为什么离职?
11、你有什么问题吗?回答不好的地方
复盘
对大模型有一定的理解,但个别问题答非所问,比如如何平衡投入产出比?
第三家:百度
一面:37分钟
1、自我介绍
2、面试官介绍岗位情况
3、介绍一下智能客服项目
4、面向B端还是C端?做过哪些竞品调研?
5、选择的什么大模型?为什么选择GLM?6B大模型够用吗?
6、你是如何应用RAG能力?如何搭建的知识库?有对知识库进行优化吗?如何进行优化的?
7、智能客服产品你是如何进行评测的?评测标准是什么?
8、商品包装项目,对比了MJ和SD,为什么选择SD?
9、SD产品形态是什么样的?如何给到客户使用的?暴露了哪些参数?
10、如何满足客户多风格的需求?评测标准是什么?
11、了解过低代码平台吗?比如百度千帆的
12、GPT Agent方向有了解过吗?国内的Agent方向产品体验过吗?感觉如何?
13、除了工作外,你平时会用大模型吗?
14、你有什么问题?
二面:42分钟
1、自我介绍
2、智能客服回复准确率是如何由75%提升到88%?
3、88%是怎么得来的?如何将打分与准确率挂钩?得分/总分
4、数据处理和转换是怎么做的?
5、运用的什么大模型?
6、你知道agent吗?体验过哪些产品?体验过GPT吗?创建过GPTs吗?
7、还知道有哪些技术可以提升大模型能力?
8、百度千帆app builder 了解吗?有哪些优势和缺点?
9、介绍了该岗位工作内容。你有什么问题吗?
三面:57分钟
1、自我介绍
2、智能客服项目你负责哪些内容?目前你遇到的最难的问题是什么?如何解决?
3、多轮对话,上下文如何解决?解决方案不是很好,时间轴,记录历史信息,除了prompt
4、采用哪个大模型?为什么?哪些地方用到了大模型?
5、如何解决大模型幻觉问题?是如何进行用户意图识别?
6、case:visa和master 模型如何判断为是要办visa卡和master?1)增加知识库内容,专有名词解释
2)对于模糊或不清晰的信息,鼓励模型要求用户提供更具体的信息或澄清疑问。
7、智能客服是C端还是B端产品?
8、AI绘画项目你负责哪些?是B端产品吗?有几个产品经理?
9、你们公司为什么既做NLP,又做文生视频,从产品规划角度来看方向不明确。
10、为什么离职?
11、介绍公司垂类大模型,一个是7B大模型,70B大模型,一个是多模态大模型,文生视频,快消行业,青岛啤酒
-
数据来源,种子用户,打造商业闭环,大模型的评测(人工+大模型评测)
-
需要一个产品,能够做1-100的产品优化
-
如果一轮面试通过,还有二轮和三轮面试
总结
case1:关于多轮对话。比如用户与大模型对话3轮后,间隔时间足够长(比如30分钟),接着上一个问题问问题,大模型能够结合上文进行回答吗?
case2:基于银行场景开发的智能客服,用户说”我想要办理VISA,该怎么办理",大模型怎么才能判断是办理VISA信用卡而不是签证?
第四家:OPPO
一面:47分钟
1、自我介绍
2、你从毕业后,做了一年测试,之后都在做需求、产品,涉及多个AI产品,详细介绍一下智能客服项目。
3、与传统客服有什么区别?
4、智能客服上线了吗?用的什么大模型?交付了几个项目?定制化还是产品化?后期有考虑产品化吗?
5、这个产品,针对不同银行/金融场景,如何能够复用?
6、如何评价产品的好坏?使用了多少训练集,比如多少组问答对?
7、商品包装项目产品形态是什么?面向B端还是C端?用户流程是什么样的?为什么要做商品包装项目?是嵌入到客户系统上还是怎么形式?
8、为什么离职?多久能到岗?
9、你有什么问题吗?
1)回答不好的地方?
2)谁在什么场景有痛点,如何运用AI技术进行解决!介绍应用场景:内容安全审核
复盘
-
考虑产品规划,定制–>通用产品
-
作为AI产品经理,建议回复时采用,谁在什么场景有痛点,如何运用AI技术进行解决。
二面:50分钟
1、自我介绍
2、系统介绍智能客服项目。
3、你作为产品经理,会兼任项目管理吗?你是怎么管理的?
4、当你面对客户方,你会做哪些调研?
5、调研方式有哪些?
6、你如何做需求分析?
7、会画高保证原型图吗?哪些场景下需要高保证原型图?
8、需求分析工具常用哪些?
9、PRD文档架构是什么?
10、PRD文档有什么特性?
11、如果客户方不配合,你怎么办?
12、当你领导和客户方的时间冲突了,你该怎么办?
13、针对需求变更,你会怎么处理?
14、你多大?目前婚姻情况?是否能适应出差?出差时长最长多长?
15、当你判断新增需求,会导致项目蔓延,你会怎么处理?
16、现在是做一个定制化项目,让你来负责,你会怎么做?
17、你有什么问题?
1)团队规模如何?
2)产品经理和项目经理是同一个人吗?
3)项目中会运用AI技术吗?最低薪资要求多少?
三面:39分钟
1、自我介绍
2、你是在上海还是在成都?老家也是成都的吗?
3、智能客服项目你负责了哪些事情?
4、针对金融场景的智能客服运用了什么技术?
5、用户对象是谁?流程是什么样的?
6、运用的哪个模型?
7、回复准确率是怎么计算的?
由于文章篇幅有限,面试题的答案没发展示出来,但是已经整理成PDF了,每一章节都是站在企业考察思维出发,作为招聘者角度回答。从考察问题延展到考察知识点,再到如何优雅回答一面俱全,可以说是求职面试的必备宝典!!完整版可直接下方扫码领取。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份网络安全从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
