【Deepseek v3开源】本地部署仅需700G,轻松运行!

DeepSeek V3 正式发布,模型与技术报告全开源,非常牛,又在大模型领域掀起了一股热议,概率为2句话:

  • 便宜,正式训练成本仅要557万美元(2000张H800),而GPT-4o预估一亿美金

  • 编程能力超过 Claude Sonnet 3.5

根据多个基准测试,DeepSeek v3 在代码方面甚至优于 Claude Sonnet 3.5

那么671B的DeepSeek V3如何本地运行尼,由于DeepSeek的框架原生采用 FP8 训练,因此仅提供 FP8 权重,预估仅700GB+显存便可轻松运行。

当然也可以转换到BF16,在半精度下,需1400GB+

量化到int4时需要300GB+

半精度 236B的DeepSeek V2,占用 490G 显存,需要 7张 80G A100

https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/tree/main``https://github.com/deepseek-ai/DeepSeek-V3/blob/main/DeepSeek_V3.pdf

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### DeepSeek V3 本地部署方法 #### 支持的框架 DeepSeek-V3 支持多种开源框架的本地部署,包括但不限于 SGLang、LMDeploy 和 TensorRT-LLM[^2]。 #### 部署准备 为了成功完成 DeepSeek V3本地部署确保环境配置满足特定条件。通常情况下,这涉及到安装必要的依赖库以及设置运行时环境变量。具体操作可参照官方文档中的环境搭建部分[^1]。 #### 权重转换流程 在执行实际部署前,权重文件要经过一系列预处理步骤以适配目标硬件架构。此过程涉及将原始训练得到的参数映射到适合推理使用的格式。具体的转换脚本可以在项目仓库中找到,按照说明进行即可实现平滑过渡。 ```bash # 假设当前目录下存在 weight_converter.py 脚本用于转换权重 python weight_converter.py --input original_weights.pt --output optimized_weights.bin ``` #### 启动服务端口 一旦所有前期准备工作就绪,则可以通过启动命令来激活 API 接口监听指定 IP 地址及端口号的服务实例。对于大多数应用场景而言,默认配置已经能够很好地工作;如有特殊求则可根据实际情况调整相应选项。 ```json { "host": "0.0.0.0", "port": 8080, "model_path": "./optimized_weights.bin" } ``` ```bash # 使用 Python Flask 框架作为简易 HTTP Server 示例 from flask import Flask, request, jsonify import torch app = Flask(__name__) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = ... # 加载已优化后的模型至内存并设定计算设备 @app.route('/predict', methods=['POST']) def predict(): data = request.get_json() input_tensor = prepare_input(data['text']) # 自定义函数:文本转张量 output = model(input_tensor.to(device)) result = process_output(output) # 自定义函数:解码预测结果 return jsonify(result) if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值