清华DeepSeek方案:小公司本地部署的最佳选择,个人用户慎入!

朋友们!今天必须给你们分享一个AI圈的热点事件!

清华大学的KVCache.AI团队搞了个叫KTransformers的开源项目,直接让咱们这些普通玩家也能在家用一张4090显卡跑动千亿参数的“满血版”DeepSeek-R1!

(是的,就是那个之前动不动就宕机、租一小时服务器得卖肾的模型!)

本地运行千亿模型,4090单卡搞定?

以前想跑DeepSeek-R1这种671B参数的巨无霸模型,要么得花200万租8卡A100服务器,要么只能玩“阉割版”模型(参数缩水90%那种)。

但现在,清华团队直接甩出王炸—仅使用 14GB VRAM 和 382GB DRAM 运行其 Q4_K_M 版本,在家流畅运行满血版DeepSeek-R1!

(问题来了,谁家有382G内存的电脑啊?!个人还是别考虑部署了)

实测数据离谱:

预处理速度最高286 tokens/s(比llama.cpp快28倍!)

推理生成速度14 tokens/s(3090显卡也能跑到9.1 tokens/s)

也就是说,写代码、分析长文档这种需要上万Token的任务,直接从“等咖啡凉了”变成“秒级响应”!

技术揭秘:如何榨干硬件性能?

这项目为啥这么猛?核心就俩字:“分工”!

让CPU和GPU“各司其职”:

GPU负责高计算强度的部分(比如Attention层),用Marlin算子暴力加速,效率提升3.87倍!

CPU处理稀疏的MoE专家矩阵(比如用英特尔的AMX指令集),预填充速度直接起飞!

MoE架构的“偷懒哲学”:

DeepSeek-R1是混合专家模型,每次推理只用部分参数。团队把不活跃的专家模块卸载到CPU内存,显存需求直接从320G砍到24G!

“抠门级”优化:

用4bit量化压缩参数,减少GPU/CPU通信断点,甚至一次解码只调用一次CUDA Graph,功耗低到80W!

成本直降95%,中小团队福音

最狠的是成本!有老哥算过账:

显卡:4090(24G)约1.5万

CPU+主板:双路至强Gold 6454S +主板≈2万

内存:1T DDR5≈3万

整套不到7万,对比A100服务器200万的天价,直接省出一套房首付!就算租云服务器,每小时几千块也够喝一壶的。

不只是DeepSeek,未来可期!

KTransformers不只支持DeepSeek,还能兼容各种MoE模型,甚至提供了ChatGPT式网页界面和HuggingFace兼容API,小白也能一键开跑!团队还预告了v0.3版本要整合至强6的128核CPU,未来速度还能再翻倍!

最后说点人话:这项目简直是“技术平权”的里程碑!以前大模型是巨头们的游戏,现在咱们用消费级硬件也能玩转千亿参数。

虽然目前对硬件配置还有点要求,但至少让普通开发者看到了希望——AI普惠化,真的不是梦!

(友情提示:想尝鲜的朋友,记得先备好1T内存和4090显卡!)

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值